
AD-A256 5731111 Ulll iirill IE131 311t0)I ll

Learning by Analogical Reasoning
in General Problem Solving

Manuela M. Veloso

August 1992
CMU-CS-92-174

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213 DI
SELECTE 0

0CT 2 81992

E
Copyright ® 1992 Manuela M. Veloso..............

AU rights reserved

This research was supported by the Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-
6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
of the U.S. Government.

Approvod for public releasO2 I
921--692- HilF n92 10 2 z'1 167?lal|/(||

Keywords: Machine learning, analogical reasoning, general problem solving, strategy
level learning, scale up, case-based reasoning, PRODIGY

egle iSchool of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Learning by Analogical Reasoning Accesion For
in General Purpose Problem Solving NTIS CRA&l

DTIC TAB

MANUELA VELOSO Unannounced EJJustification -

By
Distribution I

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Availability Codes
Avail and/or

Dist Special

ACCEPTED:

M~'-9 AJO1 RFSO DATE

DEAN DATE

APPROVED:

PROVOST DATE

To my husband, Josi Manuel,
and my sons, Andri Manuel and Pedro Manuel

Abstract

This dissertation integrates derivational analogy into general problem solving as a
method of learning at the strategy level to solve problems more effectively. The
derivational analogy method has been fully implemented in the PRODIGY architecture
and proven empirically to be amenable to scaling up both in terms of domain and
problem complexity.

Reasoning by analogy involves a set of challenging problems, namely: how to
accumulate episodic problem solving experience, how to define and decide when two
problem solving situations are similar, how to organize large amounts of knowledge
so that it may be efficiently retrieved, and finally the ultimate problem of how to
successfully transfer chains of reasoning from past experience to new problem solving
situations when only a partial match exists among corresponding problems. More
specifically, the dissertation automates the generation, storage, dynamic indexation,
retrieval and replay for multiple cases (i.e. derivational traces of past problem solving
episodes). Learning occurs by accumulation and flexible reuse of cases. The problem
solving search effort is reduced incrementally as more episodic experience is compiled
into the case library.

Scaling up the system proved to be very demanding. The current system has thus
far been demonstrated in multiple domains, including a complex logistics transporta-
tion domain where it generated a library of 1000 cases, showed strong improvements
in problem-solving performance, and pushed the solvability envelope to increaringly
more complex classes of problems.

Acknowledgments

First, I am grateful to my advisor, Jaime Carbonell. Working with Jaime was a
continuous learning experience. Jaime shared with me many of his ideas and helped
me solve many problems I faced along this work. He gave me extremely insightful
advice. With his sharp and quick understanding of the issues, he helped me organize
and apply my entangled thoughts and ideas. Jaime always trusted me and made me
feel confident about my thesis work.

I would like to thank my other thesis committee members, Tom Mitchell, Paul
Rosenbloom, and Herb Simon, for all the helpful suggestions and comments on my
research. Herb Simon a&id Tom Mitchell followed my work very closely. Herb Simon
was always interested on the detailed progress of my work. He encouraged me to
reach a full implementation of the system, so I could scale it up to tasks of realistic
size. Thanks to Herb Simon, I have a much broader view of this research. With him I
learned to appreciate many of the early research efforts in Al specially in learning. In
our several meetings, Tom Mitchell helped me keeping focused on my thesis goals, at
the same time thathe opened my interests to other related issues in machine learning.
He raised challenging questions while listening carefully to my ideas and discussing
his own with me. Through several email conversations, Paul Rosenbloom provided
me very useful feedback on my work. He helped me clarify some of my claims of this
work.

Allen Newell was not in my thesis committee. Still he shaped my thinking. We
had several long meetings where we discussed my work. Allen Newell was always
there pointing out the interesting points, forcing me to clarify my ideas, making sure
I myself would understand well the concepts, the algorithms, the implementation.
From Allen Newell I learned every day more and more what research is. Through
him I understood how to work dynamically towards my research goals. He was a real
mentor and friend.

I am thankful to all the members of the PRODIGY research group. Craig Knoblock
contributed in several ways to the accomplishment of this thesis. From very early, he
made me feel extremely at ease to discuss with him my most daring and controversial
research ideas. Craig was ready to listen, to criticize, and to help me develop what

was worth pursuing. I knew I could share with Craig my setbacks and enthusiasms.
I am also very grateful to Alicia P~rez for her help in implementing and debugging
NoLIMIT, the first nonlinear planner of PRODIGY. Alicia also implemented the first
version of part of the memory model that I designed in this thesis. Alicia and I built a
very strong and fruitful working relationship. Daniel Borrajo helped me with a major
part of the design and implementation of NOLIMIT. He put a large effort towards
this project, and accomplished it in a very short time while Daniel visited CMU. I
thank Yolanda Gil and Robert Joseph for many discussions and much support along
the years of my thesis. Special thanks go to Steven Minton for having started the
PRODIGY research project. Dan Kuokka, Oren Etzioni, Xuemei Wang, Jim Blythe,
Scott Reilly, Joe Bates, Dan Kahn, Masahiko Iwamoto, and Michael Miller all left
a touch in this thesis through discussions, suggestions, or help with system issues. i
thank Alicia P6rez, Angela Hickman, and Jim Blythe for having read major parts of
this thesis. Each one provided me with comments that improved the quality of the
presentation.

I want to thank in a very special way one of my officemates, Puneet Kumar. I
enjoyed immensely his company and thank him very much for his friendship. I ben-
efitted tremendously from his ceaseless help with system changes and enhancements.
His help extended much beyond school in a very wide range of situations, includ-
ing rides to the airport, cooking, shopping, and occasionally looking after my sons.
Thanks, Puneet!

I thank Satya and the CODA research group for having supplied me with a portable
laptop that I could use disconnected from the network. I acknowledge Jay Kistler's
thesis work which allowed the transparent disconnected operation. Special thanks to
Puneet Kumar and Jay Kistler for smoothing my involvement in this experimental
project.

The School of Computer Science at CMU is a special place. I acknowledge Nico
Habermann for having consistently promoted a community spirit among the members
of this large research group. I thank Sharon Burks for her constant willingness to
make more pleasant and facilitate our students' lives. Thanks to the facilities group in
general and to Bob McDivett in particular. Also I am thankful for the help provided
by Jennifer Jones in a variety of last-minute copying and mailing tasks.

During my years as a graduate student in SCS, I made many friends who con-
tributed to create such a unique working environment. Besides the friends already
mentioned, though certain that the list is not exhaustive, I would like to name Alan
Christiansen, Andrew Hastings, Raul Vald6s-Prez, Aarti Gupta, Anurag Acharya,
Dean Pomerleau, Spiro Michaylov, Francesmary Modugno, Amy Zaremski, Kevin
Knight, Peter Shell, Peter Jansen, Jill Fain, Mark Perlin, and David Steere.

Finally, I would like to thank my family. Back in Lisbon, my parents and all my

family courageously supported and encouraged this work, in spite of the inevitable
long separation. I thank them all for this. I am grateful to my parents and parents-
in-law for making our returns home on vacation so wonderful, full of the little things
they know we miss so much. Thank you for all their letters, their telephone calls,
their visits, thank you for all their love that really carried me through these years.
I am very thankful also for all their help taking care of my sons, Andr6 and Pedro,
who love so much going to Portugal to be with their grandparents, aunts, uncles, and
cousins.

Last, but most important, I would like to thank Manel, Pedro, Andr6, and B.rbara
for their loving support. My thesis research had its ups and downs and so did my
enthusiasm and my belief that it could be finished. Not always did I manage to leave
my research problems at CMU, but took them home with me consuming my mind. I
have no words to thank Manel, Andr6 and Pedro, for having lived with me through
this thesis. They were always here to love me, encourage me, and make me feel that
it was all worth. I fear that my thesis work stole from them much of my attention,
and deprived me from enjoying their company. In particular I want to thank Pedro
and Andr6 for the many weekends that we spent together at CMU. They were always
cheerful and packed their books and toys happily for the CMU journeys without any
complaint. It would have been very hard to complete this thesis without Manel's
support. I thank him also in particular for his surprise on the day of my defense.
With all my heart, I dedicate this thesis to Manel, Andr6, and Pedro.

Contents

1 Introduction 1
1.1 Machine learning and problem solving 2
1.2 The thesis within PRODIGY 4

1.2.1 Analogy versus EBL in PRODIGY 5
1.3 The thesis 7

1.3.1 Scientific contributions 9

2 Overview 13
2.1 Automatic case generation 14

2.1.1 Defining a problem 14
2.1.2 Problem solving run 15
2.1.3 Justification structure 17

2.2 Automatic case storage 19
2.2.1 Foot-printing the initial state 20
2.2.2 Introducing into memory another one-goal case 21
2.2.3 Storing in memory two additional two-goal problems 22

2.3 Automatic case retrieval 27
2.4 Automatic case replay 28
2.5 Summary of the example 31
2.6 A reader's guide to the thesis 32

3 The Problem Solver 35
3.1 Motivation 35

3.1.1 Linear problem solving 36
3.1.2 Nonlinear problem solving 40

3.2 NOLIMIT - The search algorithm 42
3.3 Formal definition of the problem solving procedure 44

3.3.1 Failing and backtracking 48
3.3.2 Control knowledge 50

3.4 An example: solving a one-way-rocket problem 50
3.5 Summary 54

CONTENTS

4 Automatic Generation of Cases 57
4.1 Annotating the search path 57

4.1.1 Decision points 59
4.1.2 Justification structures at decision nodes 60
4.1.3 The language 61

4.2 Formal description of the annotation procedure 63
4.2.1 Annotating the subgoaling structure 63
4.2.2 Annotating the failures 65

4.3 An example in the extended-STRIPS domain 66
4.4 Summary 71

5 Automatic Storage of Cases 73
5.1 Identifying the independent subparts of a case 74

5.1.1 Transforming a total order into a partial order 74
5.1.2 Goal indices 78

5.2 Identifying the relevant initial state 80
5.2.1 Disambiguating the notion of "relevant" 81
5.2.2 Foot-printing the initial state 83

5.3 Organization of the case library 85
5.3.1 Parameterizing the problem solving situation 87
5.3.2 The goal statement indexing structures 88
5.3.3 The initial state discrimination network 91

5.4 The complete storage algorithm 93
5.5 Summary 98

6 Automatic Retrieval of Cases 99
6.1 The ground for the retrieval procedure 99

6.1.1 What are similar problem solving situations? 101
6.1.2 How can retrieval be efficient in a large case library? 102

6.2 Defining a similarity metric 104
6.2.1 A direct similarity metric 105
6.2.2 Global foot-printing similarity metric 105
6.2.3 Interacting foot-printing similarity metric 107

6.3 The retrieval procedure 107
6.3.1 Making the implementation efficient 110
6.3.2 Illustrative example 110

6.4 Trading off retrieval and search costs 117
6.5 Summary 120

CONTENTS iii

7 Automatic Utilization of Cases 121
7.1 Replaying past problem solving episodes 121

7.1.1 Outline of the replay procedure 122
7.1.2 Advantages of replaying 124
7.1.3 Feedback to memory 126

7.2 The replay algorithm 127
7.2.1 Generation of new search directions 129
7.2.2 Pursuing the search 133
7.2.3 Advancing the cases 140

7.3 Examples 142
7.4 Feedback from the problem solver to memory 147

7.4.1 The method explored 147
7.4.2 Illustrative example 148

7.5 Summary 149

8 Empirical Results - Diversity and Scaling Up 151
8.1 Diversity of tasks 152

8.1.1 The ONE- WAY rocket domain 152
8.1.2 The extended-STRIPS and machine-shop scheduling domains 154

8.2 The logistics transportation domain 156
8.2.1 Generation of problems 157
8.2.2 Set up of experiments 159
8.2.3 The solvability horizon 160
8.2.4 Cumulative running times 163
8.2.5 Solution length 167
8.2.6 Retrieval and replay times 168
8.2.7 Retrieval time against the size of the case library 171
8.2.8 Search nodes explored 172

8.3 Summary 174

9 Related Work 175
9.1 Generation and contents of cases 175
9.2 Storage and retrieval of cases 177
9.3 Utilization of learned knowledge 179
9.4 Summary 181

10 Conclusion 183
10.1 Summary 183
10.2 Future research directions 185

10.2.1 Powerful tools for planning 185
10.2.2 Integration of learning paradigms 185
10.2.3 Historical learning 187

iv CONTENTS

A The Logistics Transportation Domain 189
A.1 Domain definition 189
A.2 Experimental data 193

List of Figures

1.1 Problem solving reasoning continuum 3
1.2 The PRODIGY architecture 5
1.3 Some characteristics of the PRODIGY/EBL learner 6
1.4 Characteristics of PRODIGY/ANALOGY as opposed to PRODIGY/EBL . 6
1.5 Challenges of analogical reasoning 7
1.6 Synergy: problem solver and memory 8

2.1 Example problem exi: (a) class distribution of instances, (b) initial
state, (c) goal statement 14

2.2 Operators LOAD-TRUCK and DRIVE-TRUCK 15
2.3 Problem solving running trace 16
2.4 The search episode of Figure 2.3 represented as a search tree - the

numbering of the nodes shows the order of expansion 18
2.5 The resulting generated case 19
2.6 The foot-printed initial state for the problem exi corresponding to the

case shown in Figure 2.3 20
2.7 Contents of the case library after storing problem exi 21
2.8 Example problem ex2: (a) class distribution of instances, (b) initial

state, (c) goal statement 22
2.9 Problem ex2: (a) solution, (b) foot-printed initial state 22
2.10 Additional contents of the case library after problem ex2 22
2.11 Example problem ex3: (a) class distribution of instances, (b) initial

state, (c) goal statement 23
2.12 Problem ex3: (a) solution, (b) foot-printed initial state 23
2.13 Partially ordered plan for example ex3 24
2.14 Contents of the case library related to the new stored problem ex3.. 24
2.15 Example problem ex4: (a) class distribution of instances, (b) initial

state, (c) goal statement 25
2.16 Problem ex4: (a) solution, (b) foot-printed initial state 26
2.17 Partially ordered plan for example ex4 26

v

vi LIST OF FIGURES

2.18 Case library after example ex4 27
2.19 Example problem multi: (a) class distribution of instances, (b) initial

state, (c) goal statement 27
2.20 Retrieving analogous past situations for problem multi 28
2.21 Following multiple cases - Serial merging during derivational replay 29
2.22 Partially ordered plan for example mult I 30
2.23 Memory after example multi 31
2.24 A reader's guide to the thesis 33

3.1 The Sussman anomaly: Find a plan to transform the initial state to
achieve the goal statement 37

3.2 Two linear plans that solve the Sussman anomaly inefficiently 37
3.3 The three operators defining the ONE- WA Y-ROCKET domain. ... 38
3.4 A problem in the ONE- WA Y-ROCKET domain 39
3.5 Two failed linear plans for the ONE- WA Y-ROCKET problem. The sec-

ond conjunctive goal cannot be achieved because the ROCKET cannot
return to pick up the remaining object 39

3.6 A skeleton of NOLIMIT's search algorithm43
3.7 Problem solving stepping46
3.8 Generating the children for a problem solving search tree 47
3.9 Committing in the active search path 48
3.10 Backtracking in a search path of a problem solving search tree 49
3.11 Tracing NOLIMIT solving the ONE-WAY-ROCKET problem 52
3.12 The search episode of Figure 3.11 represented as a search tree 55

4.1 Justification record structure, to be instantiated at decision points dur-
ing problem solving 60

4.2 Committing in the active search path with annotation of the justifica-
tions at the search decision nodes 64

4.3 Backtracking in a search path of a problem solving search tree with
annotation of the failure reasons at the search decision nodes 65

4.4 Some operators from the extended-STRIPS domain 67
4.5 Example problem definition in the extended-STRIPS domain; The goal

statement is a partial specification of the final desired state: the loca-
tion of other objects and the status of other doors remains ,nspecified. 68

4.6 A search episode to solve the problem in Figure 4.5 represented as a
search tree 69

4.7 A simplified case. corresponding to a solution to the problem in Fig-
ure 4.5 ; A case is an annotated successful problem solving episode. 70

4,8 Zoom of some justified decision nodes 70

LIST OF FIGURES vii

5.1 An example of a partially ordered plan 75
5.2 Building a partial order from a total order 76
5.3 Partial order with transitive edges 77
5.4 Finding the set of interacting goals 79
5.5 Problem situation in the extended-STRIPS domain (strips2-17); The

goal statement is a partial specification of the final desired state: the
location of other objects and the status of other doors remains unspec-
ified 82

5.6 Two different solutions for the problem in Figure 5.5 : Plans (al), (bl),
and their corresponding foot-printed initial states (a2) and (b2) . . . 83

5.7 Foot-printing the initial state 84
5.8 Interacting goals and foot-printed initial state used as the case indices 86
5.9 The class hierarchy in the extended-STRIPs domain 87
5.10 Parameterized goals in the example problems, strips2-5, strips2-17, and

strips3-9 89
5.11 Indexing data structures 90
5.12 The frame structure of the nodes of the discrimination net for the initial

state. 92
5.13 A simple discrimination tree for the initial state 93
5.14 The complete storage algorithm 94
5.15 A sketch of the organization of the case library 95
5.16 Algorithm to insert a new case into memory 96
5.17 Inserting a new case into the state net 97

6.1 Retrieving similar past cases 108
6.2 Indexing data structures for the example of chapter 2 111
6.3 Contents of the case library 112
6.4 A new example - mult2: (a) class distribution of instances, (b) initial

state, (c) goal statement 113
6.5 (a) Foot-printed past initial state of a candidate analog after applying

the goal substitution; and (b) the new initial state (b) 114
6.6 (a) Foot-printed past initial state of another candidate analog after

applying the goal substitution; and (b) the new initial state115
6.7 Retrieving similar past cases for problem mult2 116
6.8 Three different curves for the match value as a function of the retrieval

time 118
6.9 Retrieval time (curve 2) plus analogical search effort (curve 1) 119

7.1 Informal outline of the replay procedure 124
7.2 Transfer from past decision nodes - an example from an operator transfer 125

viii LIST OF FIGURES

7.3 Four situations to encode the utility of the guidance received: (a) Fully-
sufficient: past case is fully copied; (b) Extension: past case is used but
additional steps are performed in the new case; (c) Locally-divergent:
justifications do not hold and invalidate transpose part of the past case;
(d) Globally-divergent: extra steps are performed that undo previously
transferred steps 126

7.4 Problem solving stepping 128
7.5 Generating the children for a problem solving search tree 129
7.6 Validating the past chosen operator 131
7.7 Role substitution added at replay time 132
7.8 Reusing the justifications of a chosen operator node 132
7.9 Committing in the active search path 133
7.10 Validating a new step from a past case 135
7.11 Strategies to choose a case to pursue from the set of guiding cases . . 136
7.12 Reusing the justifications of a goal node 138
7.13 Reusing the justifications of an applied operator node 139
7.14 Reusing the justifications at the why-slots 139
7.15 Advancing the guiding cases to the next potentially useful steps . . . 141
7.16 Following one case - Subgoaling structure and failures 143
7.17 Following multiple cases - Merging during derivational replay 145
7.18 An example problem - in-truck: (a) class distribution of instances, (b)

initial state, (c) goal statement 148
7.19 An example case - in-airplane: (a) class of variables, (b) foot-printed

initial state, (c) goal statement 148

8.1 A perspective on the diversity of tasks and the stage of the framework
in which they were introduced 153

8.2 Results in a simple transportation domain 153
8.3 Comparison between the number of nodes searched with NoLIMIT's

base-level search algorithm and with the analogical reasoner following
the guidance of cases found similar according to two different similarity
metrics 156

8.4 Dialogue for the generation of a set of problems 157
8.5 Set of problems created from the dialogue in Figure 8.4. The system

creates random initial state configurations and goals that follow the
user's specifications 158

8.6 Number of problems solved from a set of 1000 problems for increasing
running times bounds. By base-level search the problem solver solves
only 458 problems while with analogy it solves the complete set of 1000
problems 162

LIST OF FIGURES ix

8.7 Number of problems solved for different ranges of problem complexity 164
8.8 Cumulative running time for the 458 problems from a set of 1000 prob-

lems solved both by base-level search (without analogy) and by deriva-
tional analogy (with analogy) 165

8.9 Cumulative running time for the set of 1000 problems. If a problem
is not solved it is accounted for with the CPU time limit used of 350
seconds 166

8.10 Comparison in solution length between the base-level and the analog-
ical problem solvers 167

8.11 Retrieval plus replay time for 50 simple problems (a) and for 50 harder
problems (b). The problems are sorted according to their running time
without analogy 169

8.12 Difference between the running time without analogy and the sum of
the retrieval and analogical running times for the problems solved both
by base-level search and by analogy 170

8.13 Problems ordered in the sequence in which they were run. The case
library is growing along the x axis at the same time that more problems
become solved. The graph represents the replay and retrieval times
accumulated for chunks of 100 problems 172

8.14 Difference between the number of nodes explored by base-level search
and by analogy for all the problems 173

LIST OF FIGURES

Chapter 1

Introduction

The ultimate goal of the field of Artificial Intelligence is to understand what intelli-
gence is and how it can be captured by computational algorithms [Newell and Simon,
1956]. One of the more complex human intelligent processes is the ability to solve
problems. Newell and Simon discovered how to model the human problem solving
paradigm as an heuristic search in a state space [Newell and Simon, 19721. The
approach consists of interpreting a problem solving situation in terms of an initial
configuration, a set of possible actions to transform the state, and a desired goal
state. The problem solving algorithm searches for a particular sequence of actions
that transforms the given initial state into the desired final state. Over the years dif-
ferent algorithms have been developed to perform this search for a satisficing solution
to a problem.

However Al researchers have found that these classical Al techniques for problem
solving involve large amounts of search even for moderately complex problems. Faced
with this situation, several subareas within AI tried to develop methods for encap-
sulating more knowledge to reduce problem solving search. These methods range
from expert system approaches, where all the knowledge is laboriously handcoded at
the outset, to machine learning approaches that aim at automating the process of
compiling problem solving experience into reusable knowledge. This thesis work falls
within the latter category, as it explores a novel method to automate the process of
acquiring, storing, retrieving and reusing problem solving experience.

This chapter is divided into three sections. The first section situates the thesis
approach within other machine learning methods applied to problem solving. Sec-
tion 2 describes the motivation for this work within the PRODIGY architecture. Finally
section 3 introduces the thesis and its scientific contributions.

2 CHAPTER 1. INTRODUCTION

1.1 Machine learning and problem solving

The machine learning approaches to acquiring strategic knowledge typically start
with a general problem solving engine and accumulate experience in the process of
solving problems the hard way (via extensive search), or via demonstrations of viable
solutions by an external (human) teacher. The knowledge acquired can take many
forms:

"* Macro-operators composed of sequences of domain-level operators which, if ap-
plicable, take "large steps" in the problem space and thereby reduce search [An-
derson, 1983, Cheng and Carbonell, 1986, Fikes and Nilsson, 1971, Korf, 1985,
Minton, 19851. In essence, intermediate decisions corresponding to steps inter-
nal to each macro-operator are bypassed, in the construction of a parameterized
fragment of the proven solution path into a macro-operator.

" Reformulated left-hand sides of operators and inference rules, where the new
left-hand sides are stated in terms of "operational" or initial-state conditions
so as to facilitate their selection and application. This is one typical output of
explanation-based learning systems [DeJong and Mooney, 1986, Mitchell et al.,
1983, Mitchell et al., 1986, Neves, 19801.

" Explicit control rules (or meta rules) that guide the selection of domain-level
subgoals, operators or inference rules in the planning process. These may also be
generated by the explanation-based learning process when the basic architecture
of the problem solver itself is axiomatized and available to the learning module,
along with the domain theory [Minton, 1988].

" Generalized "chunking" of all decisions taken by the problem solver, including
goal selection, operator selection and other impasse-driven decisions that re-
quired search. The output of these internal decisions are at once compiled into
new chunks by a background reflex process and become immediately available
to the problem solver's recognition process [Laird et al., 1986, Newell, 1980].

"* Memorized actual instance solutions annotated with intermediate problem solv-
ing states (such as subgoal trees, causes of intermediate planning failure, jus-
tifications for each selected planning step, etc.). These are used in analogical
reasoning [Carbonell, 1983, Carbonell, 1986] and case-based reasoning (CBR)
[Hammond, 1986, Kolodner, 1980, Schank, 1982] to reduce search by using the
solutions of similar past problems to guide the planner in constructing the so-
lution to the new problem.

1.1. MACHINE LEARNING AND PROBLEM SOLVING 3

All of these methods seek to compile existing domain knowledge into more effective
form by combining it with search control knowledge acquired through incremental
practice. In essence, the idea is to transform book knowledge into practical knowledge
that can be applied much more readily, occasionally compromising generality for
efficiency of application, but retaining the initial knowledge as a safety net.

The problem solving methods developed so far in Al can be organized in a prob-
lem solving reasoning continuum as shown in Figure 1.1.1 They range from search
intensive to knowledge intensive methods.

Search e First principles -
Intensive base search

* First principles
and local control

I
DerivationalBig gap Analogy

I
* Retrieve, adapt,

Knowledge instantiate
Intensive * Retrieve and in-

stantiate - look-up

Figure 1.1: Problem solving reasoning continuum

Pure search intensive methods search exhaustively for a solution from first prin-
ciples, i.e., individual steps that model atomic actions in the task domain and may
be chained to form a solution to a problem. Pure knowledge intensive methods for
problem solving presuppose the existence of a collection of instance or generalized
solutions from where the problem solver may retrieve and eventually instantiate the
adequate solution. Variations from these two extreme approaches extend the search
intensive paradigm to searching guided by local control knowledge while the knowl-
edge intensive extreme extends to a pure case-based reasoning approach in which the
retrieved solution may be adapted after being retrieved and instantiated.

'This picture was drawn by Jaime Carbonell in one of our recent discussions.

4 CHAPTER 1. INTRODUCTION

There is however a big gap between these two problem solving directions. Deriva-
tional analogy was proposed by Carbonell ([Carbonell, 1986]) precisely to fill in this
gap as a method that would draw nearer the search and the knowledge intensive
paradigms. This thesis is grounded on that initial work. Derivational analogy is a
problem solving method that replays and modifies past problem solving traces in new
similar situations. The thesis goes largely beyond the original derivational analogy
framework as proposed in [Carbonell, 1986]. First, the thesis refines and extends the
initial derivational analogy to replay the rich episodic memory structures in the non-
linear problem solver of PRODIGY, essentially designing and implementing a flexible
case-based reconstructive reasoning process that can be guided by multiple similar
cases. Second, the thesis achieves seamless integration of derivational analogy with
basic means-ends problem solving, where either can be invoked in universal sub-
goal reduction. Third, the thesis develops an adaptive memory organization model
closely coupled with the problem solver to retrieve the most relevant problem-solving
episodes to address each new problem at hand. Fourth, the thesis includes a complete
implementation, providing comparative empirical evidence to evaluate the utility of
recycling and organizing past experience in the derivational analogy framework.

1.2 The thesis within PRODIGY

This thesis takes place in the context of PRODIGY [Carbonell et al., 1990]. PRODIGY
is an intelligent integrated architecture that is designed as a testbed for research in
general problem solving and learning. A general problem solver is combined with
several machine learning modules. The problem solver is an advanced operator-based
planner that includes a simple reason-maintenance system and allows operators to
have conditional effects. All of PRODIGY'S learning modules share the same general
problem solver and the same domain representation language (see Figure 1.2). Learn-
ing methods acquire domain and problem specific control knowledge in the form of
factual and strategic knowledge.

The operator-based problem solver produces a complete search tree, encapsulat-
ing all decisions - right ones and wrong ones - as well as the final solution. This
information is used by each learning component in different ways: to extract search
control rules via explanation-based learning (EBL) [Minton, 1988], to build deriva-
tional traces (cases) by the derivational analogy engine (as presented in this thesis),
to analyze key decisions by a knowledge acquisition interface [Joseph, 19891, or to
formulate focused experiments [Carbonell and Gil, 1990]. The axiomatized domain
knowledge is also used to learn a hierarchy of abstraction layers (ALPINE) [Knoblock,
1991], and generate control rules by static partial evaluation (STATIC) [Etzioni, 19901.

1.2. THE THESIS WITHIN PRODIGY 5

Prole Analogical Ca.se

ALPINEMemory
Solver Replay

Knowledge
Acquisition xperimentati°

Figure 1.2: The PRODIGY architecture

The contribution of this thesis to the PRODIGY research project is the development of
the analogical reasoner as an alternative learning technique. Because both EBL and
learning by analogy acquire control knowledge, I now briefly relate the motivation to
explore this technique by contrasting it with the EBL approach.

1.2.1 Analogy versus EBL in PRODIGY

Learning by analogy within PRODIGY was motivated in part by trying to loosen the
assumptions and techniques underlying the PRODIGY/EBL learning method. EBL
is a strong learning method by which the domain theory is interpreted under the
bias of each particular problem solving example. The domain theory is reformulated
into a more operational description that enables the problem solver to search more
efficiently for solutions to problems. The results produced by this learning technique
are very significant [Minton, 1988).

The method however has drawbacks. Figure 1.3 summarizes the characteristics
of the mechanism that contrast most directly to the research goals of this work.
In PRODIGY/EBL the system invests a large learning effort to produce generalized
and correct control knowledge. The method requires a complete domain theory to
ground the generalization of the failures and successes encountered in the unique
example to be analyzed. The EBL learner performs an eager effort of understanding
and generalizing completely and correctly the local and individual decisions of the
problem solving episode. Finally EBL applies its learned knowledge only when the

6 CHAPTER 1. INTRODUCTION

new decision making situation exactly (or fully) matches the learned operationalized
control knowledge.

PRODIGY/EBL:

"* Produces generalized provably correct control knowledge.
"* Requires complete domain theory.
"* Performs eager learning.
"* Learns from local decisions.
"* Reuses exactly matched learned knowledge.

Figure 1.3: Some characteristics of the PRODIGY/EBL learner

Analogical reasoning can be seen as a major relaxation of the restrictions to the
EBL paradigm. Figure 1.4 summarizes the characteristics of the analogical reasoner
designed and developed in this thesis. EBL uses an example trace of a solved prob-
lem and domain axioms to prove the correctness of decisions at choice points and
then synthesize generalized control rules from these proofs. Instead of investing sub-
stantial effort deriving general rules for behavior from each example as EBL does,
the analogical reasoner automatically generates and stores annotated traces of solved
problems (cases) that are elaborated further when needed to guide similar problems.
Compiled experience is then stored with little post processing. The domain theory
does not have to be completely specified as the problem solving episodes are loosely
interpreted and not fully generalized. The explanation effort is done incrementally
on an "if needed" basis at storage, retrieval and adaptation time when new similar
situations occur. The complete problem solving episode is interpreted as a global
decision-making experience where independent subparts can be reused as a whole.
Finally maybe the most clearly recognized characteristic of an analogical reasoner is
its ability to reuse partially match learned or accumulated experience.

PRODIGY /ANALOGY:
"* Produces control knowledge empirically from justified episodic traces.
"* Performs lazy learning (on an "if-needed" basis).
"* Does not require a complete domain theory.
"* Learns from local and global decisions chains.
"* Reuses partially matched learned experience.

Figure 1.4: Characteristics of PRODIGY/ANALOGY as opposed to PRODIGY/EBL

The immediate support for the utility of the analogical approach over EBL is
that, on one hand, some domains may be incompletely specified for which EBL is
not able to generate deductive proofs [Tadepalli, 1989, Duval, 1991]. On the other

1.3. THE THESIS 7

hand, in complex domains EBL can become very inefficient with long deductive chains
producing complex rules for situations that may seldom, if ever, be exactly repeated.
Finally the localized character of the learned knowledge in EBL is a source for an
increase of the control knowledge available to match and select from at decision
making time.

While the discussion above provides direct motivation for this thesis research, the
two learning methods are complementary rather than orthogonal in their learning
abilities. It is beyond the scope of this thesis to thoroughly compare and study the
integration of these two learning paradigms. On the contrary, this thesis demonstrates
the validity of the analogical learning paradigm in particular in large and complex
domains. However some empirical comparison can be drawn froum the results in
section 8.2.4. The future work section (see section 10.2) also discusses plausible
directions for the integration of these two learning methods enlightened by this thesis
re-earch.

1.3 The thesis

Reasoning by analogy involves a set of challenging problems, namely how to accumu-
late episodic problem solving experience; how to define and decide when two problem
solving situations are similar; how to organize large amounts of knowledge so that it
may be retrieved efficiently; and finally the ultimate problem of how to successfully
transfer chains of reasoning from previously solved problems to new ones when only
a partial match exists among them (see Figure 1.5).

e How to accumulate episodic problem solving experience? What to preserve

from the search tree?

* How to organize a large case library? What are the appropriate indices?

e How to retrieve past experience efficiently? What are similar problem solving
situations?

* How to reuse a set of previously solved analogous problems? What to transfer
from partial matches?

Figure 1.5: Challenges of analogical reasoning

This thesis work addresses all these challenges and provides methods implemented
successfully for large and complex planning problems in a diversity of domains. This

8 CHAPTER 1. INTRODUCTION

achievement is due mostly to the design of a fully and strongly integrated problem
solving engine and case library memory manager. This novel integration allows the
system to generate, store, retrieve, and replay past cases, i.e., derivational traces
of past problem solving episodes automatically and efficiently. Learning occurs by
accumulation and reuse of cases, and by tuning the indexing structure of the mem-
ory model to retrieve progressively more appropriate cases. On one hand search is
reduced at the problem solving level by replaying past similar cases. On the other
hand the system learns the relative relevance of the memory indices incrementally by
interpreting the behavior of the problem solver replaying retrieved cases.

The problem solver and the case library manager ccmmunicate as shown in Fig-
ure 1.6, where Wi is the initial world, G is the goal to be achieved, Wf is the final
world, Sol is the solution found, Analogs are the retrieved candidate similar cases,
and Feedback represents both the new sived problem and information about the
utility of the candidate analogs in reaching a solution.

W,, G Analogical W1, G "l Case

:[Problem Analogs [Library

Wf o Solver IManager

Feedback
(Solution and Relevance of Analogs)

Figure 1.6: Synergy: problem solver and memory

In a nutshell, in the integrated system designed and developed in this thesis, the
problem solver has the ability (and mandate):

1. to ask the memory manager for advice on how to solve a problem, (i.e., guidance
based on past experience, stored as annotated derivational traces),

2. to replay the past solutions received as analogs and create an annotated solution
for the new problem based both on the guidance received from the memory
manager, and on the domain theory available, and

3. to return to the memory manager both, information about the utility of the
guidance received for creating the solution (i.e., the relevance of the retrieved
cases), and the new justified case (a new annotated derivational trace).

Memory organization is in a closely coupled dynamic relationship with the problem
solving engine. The memory manager has the ability (and mandate):

1.3. THE THESIS 9

1. to search efficiently its case library for a set of cases solved in the past that
adequately relate to the new problem presented by the problem solver,

2. to reorganize the memory indexing links , as a function of the feedback re-
ceived from the problem solver on the utility, in solving the new problem, of
the guidance provided by the retrieved cases.

The methodology followed in the thesis can be divided into two phases: (i) to
develop the overall integrated system by designing one by one each of its constituents
functional modules, and (ii) to validate empirically the implemented system in com-
plex domains.

In the first phase I initially created a complete nonlinear problem solver that
searches for the solution to a problem by performing means-ends analysis using the
domain theory. I extended this base-level problem solver into an analogical reasoner
with the capabilities to generate episodic justified derivational traces from its search
experience, and to replay past similar problem solving episodes. I completed the ana-
logical reasoning cycle by developing the algorithms for the organization and access
to the case library. Clearly this incremental building methodology is a closed loop
process where the development of each functional aspect may affect the other modules
and contribute to their refinement.

In the second phase the goal is to validate the algorithms developed through exten-
sive experiments in a diversity of domains including a complex one from the problem
solving viewpoint. I explored the scaling up properties of the designed integrated
learner and problem solver by generating and testing the system performance in a
case library of more than 1000 cases.

1.3.1 Scientific contributions

This thesis has novel contributions in the three areas of machine learning, case-based
reasoning, and planning.

Contributions to Machine Learning

Utility of partial match:

e Learning from similar experience: The thesis successfully demonstrates the
utility of transferring problem solving experience in partially matched new
situations.

10 CHAPTER 1. INTRODUCTION

e Multi-case replay - from simple to complex problems: In the thesis a so-
lution to a new problem is constructed by merging multiple similar past
cases. This method enables the learner to solve complex problems after
being trained by simple problems.

* Self-tuning memory organization: The thesis also explores an incremental
method to learn the relevance of the indexing features of the compiled
experience. The memory is dynamically reorganized based on feedback
from the problem solver on the utility of the guidance provided.

Extending the power of time-bounded problem solving:

"* Speed-up factor (2x - 4Ox): The problem solver is able to solve many
problems more efficiently by analogy than by base search. The empirical
results obtained in this thesis show cumulative speed-ups of up to a factor
of 5.3 and individual speeds-up of approximately 40.

"* Pushing the solvability horizon: An additional contribution to the speed-
up experienced is the fact that many of the problems that are unsolved by
the basic problem solver are solved by the analogical reasoner.

Contributions to Case-Based Reasoning

Spanning the gamut from CBR to general planning: Previous CBR research
efforts concentrated on developing efficient techniques for indexing, retrieving,
and adapting problem solving episodes in special purpose environments. The
thesis extends the gamut of CBR from special purpose memory managing tech-
niques to wide general purpose problem solving and planning.

Automatic identification of relevant memory indices: The foot-printing algo-
rithm designed and implemented in the thesis contributes to disambiguate the
identification of which features of a world configuration are relevant to solving
a given problem. These features are identified uniquely from the derivational
trace of the particular problem solving search episode.

Unifying multiple cases into replay mechanism: To construct solutions to com-
plex problems the thesis elaborates a sophisticated replay and reconstruction
algorithm that merges multiple similar past cases guided by their individual
annotated justification structures.

1. 3. THE THESIS 1

Multiple indexing of cases: A problem solving episode may be a collection of in-
dependent subparts that can be reused separately. The thesis presents an algo-
rithm that efficiently partially orders a totally ordered problem solving episode
by using the dependency structure of the plan produced by the problem solver.
The connected components of the resulting partially ordered graph identify the
independent subparts of the complete case and the corresponding sets of inter-
acting goals which are used to multiply index the case into its independently
reusable fragments.

Scale up in the size of the case library: The thesis provides empirical valida-
tion of the algorithms developed for the memory organization and analogical
problem solving within a large case library of more than 1,000 elaborated cases
in a complex domain.

Full automation throughout: The thesis consists of a fully automated framework
for the complete cycle of analogical problem solving, namely for case generation,
storage, retrieval, and replay.

Contributions to Planning

Nonlinear planner generates cases as derivational traces: The thesis includes
the design and implementation of a nonlinear problem solver that reasons about
totally ordered plans and is complete as it can interleave goals and subgoals at
any search depth. This problem solver generates derivational traces, i.e., cases
to be stored, annotating successes and failures fromn its episodic search experi-
ence.

Mutually recursive analogical replay and base-level planner: The analogical
problem solver can recursively plan by adapting a set of similar plans, and plan
by searching from the domain theory.

Generality of planner: The analogical planner is domain independent and hence
is a general purpose problem solver. It runs in multiple domains, and of realistic
size.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Overview

What is the coherence of the overall thesis?

In the subsequent chapters of this thesis I describe in detail the algorithms de-
veloped for each one of the submodules of the overall system. However all those
individual components are tied together by a unique coherent idea. In this chapter
I illustrate the complete analogical reasoning cycle with a simple example overview-
ing the full system to clarify the way in which the different modules correlate and
communicate. The chapter terminates with a comprehensive reader's guide for the
remainder of the thesis.

The exemplary problems are taken from a logistics transportation domain. In this
domain, packages are to be moved among different cities. Packages are carried within
the saw' city in trucks and between cities in airplanes. At each city there are several
locations, e.g., post offices and airports. The complete description of this domain is
provided in appendix A. The problems used in this example are simple for the sake
of a clear illustration of the overall reasoning process, but PRODIGY/ANALOGY was
tested with problems involving up to 20 goals, over 100 literals in the initial state,
and over 200 decisions-long solutions.

The example starts with an empty case library. The initial problems are solved
by the base-level problem solver using the available domain theory and str,red in the
case library as indexed annotated cases. After some problems are stored in the case
library, the example shows a new problem solved by analogy with previous similar
ones. Two analogous problems are retrieved from memory and replayed to achieve
a solution to the new problem. This new solved problem is stored into memory and
the cycle repeats for each new problem proposed to the problem solver.

13

14 CHAPTER 2. OVERVIEW

2.1 Automatic case generation

This section shows how a problem is defined, how the base problem solver searches
for a solution and generates a case from the derivational trace of the problem solving
search episode.

2.1.1 Defining a problem

Consider a problem where an object is at a post office and the goal is to have it
inside of a truck located in the same city as the object. The truck is at the city's
airport. The solution to this problem is to drive the truck from the airport to the
post office and then load the object into the truck. I show below how the planner
searches successfully for a solution to this simple problem. The system generates a
case to store in memory from the derivational trace of the corresponding problem
solving episode.

Figure 2.1 shows an illustration of the problem with a description of the initial
state and goal statement as they are specified to the problem solver. The specific
instances of the world configuration are organized in classes in a type hierarchy (see
appendix A). Figure 2.1 (a) shows that, in this problem, there are two objects (or
packages), ob4 and ob7, one truck tr9, and one airplane p1l. There is one city c3
where there is a post office p3 and an airport a3. Figure 2.1 (b) describes the initial
state where ob4 is at the post office p3, ob7 is at the airport a3, at which there are
also both carriers, tr9 and p11. The goal, as shown in Figure 2.1 (c), is to have
object ob4 inside of the truck tr9.

(has-instances (state (and (goal
(OBJECT ob4 ob7) (at-obj ob4 p3) (inside-truck ob4 tr9))
(TRUCK tr9) (at-obj ob7 a3)
(AIRPLANE phl) (at-airplane pll a3)
(AIRPORT a3) (at-truck tr9 a3)
(POST-OFFICE p3) (same-city a3 p3)))
(CITY c3))

(a) (b) (c)
Figure 2.1: Example problem exi: (a) class distribution of instances, (b) initial state, (c)
goal statement

For illustration purposes, Figure 2.2 introduces two operators of this logistics
transportation domain that are relevant to solving the given problem. Operators are
defined as a list of preconditions necessary to be true in the state before the operator
can be applied, and a list of changes to be performed to the state when the operator is
applied. The operator LOAD-TRUCK specifies that an object can be loaded into a truck

2.1. AUTOMATIC CASE GENERATION 15

if the object and the truck are at the same location, and the operator DRIVE-TRUCK
states that a truck can move freely between locations within the same city.

(OPERATOR LOAD-TRUCK (OPERATOR DRIVE-TRUCK
(params ((<obj> OBJECT) (paraus ((<truck> TRUCK)

(<truck> TRUCK) (<loc-from> LOCATION)
(<loc> LOCATIO))) (<loc-to> LOCATIOI)))

(preconds (preconds
(and (and

(at-obj <obj> <loc>) (at-truck <truck> <loc-froz>)
(at-truck <truck> <ioc>))) (same-city <loc-to> <loc-frou>)))

(effects (effects
((add (inside-truck <obj> <truck>)) ((add (at-truck <truck> <loc-to>))
(del (at-obj <obj> <1oc>))))) (del (at-truck <truck> <loc-from>)))))

Figure 2.2: Operators LOAD-TRUCK and DRIVE-TRUCK

2.1.2 Problem solving run

The problem solver uses a backward chaining means-ends analysis search procedure
with full subgoal interleaving. Figure 2.3 shows the problem solving trace as the
sequence of decisions made during the search to try to achieve the final goal. When
different alternatives are available the problem solver chooses randomly among them
which one to pursue further. The trace is a sequence of goal choices followed by
operator choices followed occasionally by applying operators to the state when their
preconditions are true in that state and the decision for immediate application is
made. It may be confusing initially to differentiate between goal predicates and
the names of the instantiations of the operators. To make this task easier, I chose
operator names that are derived from verbs and goal predicates names that are de-
rived from prepositions. Therefore (load-truck ob4 tr9 a3) refers to the operator
LOAD-TRUCK with instantiated values ob4 for the object variable <obj>, tr9 for the
truck variable <truck>, and a3 for the location variable <loc> (see Figure 2.2). On
the other hand, (inside-truck ob4 tr9) is a goal literal that unifies with "inside-
truck" effect of the operator LOAD-TRUCK.

In the trace, the operators applied are written in upper case. The steps are
numbered for each particular search path. Each step further has a tn number that
tells the chronological order of the search expansion of that step. When a failure is
encountered, the problem solver has a simple backtracking strategy that guarantees
the completeness of its search procedure. This example illustrates two instances of
chronological backtracking, i.e., upon failure, the problem solver returns to its last

16 CHAPTER 2. OVERVIEW

choice point in its current search path, and pursues the search from there with another
alternative (e.g., a different operator, a different variable instantiation, or a different
goal ordering).

According to the domain as specified in Figure 2.2, there are two instantiated op-
erators that are relevant to the given goal, i.e., (inside-truck ob4 tr9) unifies with

the effect (inside-truck <obj > <truck>) of the operator LOAD-TRUCK, namely with
instantiations <load-truck ob4 tr9 p3> and <load-truck ob4 tr9 a3>. The ob-
ject ob4 can be loaded into the truck tr9 either at the post office p3 or at the airport
a3. Step 4 of the trace in Figure 2.3 shows faese two alternatives. Node tn4 at that
step 4 shows that initially the alternative of loading the truck at the airport a3 is

pursued.

<c1) (nlrun-prob 'orl)
e*ee*O************** *** 4. ta4 (load-truck ob4 tr9 .3)

Solving the problem egg: ops-left: ((load-truck oh4 tr9 p3))

Initial state : S. tan (at-obJ ob4 a3)

((at-obJ o.4 p3) (at-truck tr9 a3) 6. tn9 (unload-truck o.4 tr'9 3)

(same-city .3 p3)) 000

aoal statement: (inside-truck oh4 tr9)
FAILURE - goals in loop:

Starting a search path ((inaide-truck ob4 tr9))
eeeeeeeee*se*eeeeese*eee***

1. tnl (done) Starting a noa search path

2. tn2 (efinishe)
3. tn3 (i--ide-truck ab4 tr9) 1. tal (done)

4. tn4 (load-truck ob4 tr9 &3) 2. tn2 (*finish*)

ope-left: ((load-truck o.4 tr9 p3)) 3. ta3 (inside-truck ob4 tr9)

S. tan (at-obJ ob4 &3) 4. talO (load-truck o.4 tr9 p3)

6. tn6 (unload-airplane ob4 pll &3) see

ops-left: ((unload-truck oh4 tr9 .3)) 5. tall (at-truck tr9 p3)

7. taT (iaside-airplane ob4 p11) 6. tnl2 (drive-truck tr9 a3 p3)

8. tn8 (load-airplane ob4 pl1 &3) 7. T113 (DNIVK-T1I T19 A3 P3)

8. T114 (LOAD-TRUCK 034 TIS P3)

FAILURE - goals in loop: 9. T115 (sFI1IS*)

((at-obj o64 .3))

Starting a new search path This is the solution found:

1. tal (done) (DBIVE-T=UCK tr9 &3 p3)

2. tn2 (efinish*) (LOAD-TRUCK oh4 tr9 p3)

3. tn3 (inside-truck oh4 tr9) (*FINISH*)
nil
<cl>

Figure 2.3: Problem solving running trace

While pursuing this alternative, the problem solver subgoals on putting the object
at the airport where the truck is, as shown in node tn5. An object can be put

at an airport either by unloading it from an airplane or from a truck, as specified
in the domain knowledge (see appendix A). Pursuing the choice of unloading the
airplane, the problem solver finds again the need to subgoal on the goal (at-obj

2.1. AUTOMATIC CASE GENERATION 17

ob4 &3) that is already chosen in the search path at node tn5 and not achieved yet.
This corresponds to a goal loop and the problem solver detects a failure. Without
knowledge of the reason for the failure, the problem solver backtracks chronologically
and tries again unsuccessfully to unload ob4 at the airport from a truck, as shown in
node tn9. The solution is finally encountered when the problem solver chooses the
correct alternative of loading the truck tr9 at the post office p3, where the object
ob4 is located. It first drives truck tr9 from the airport a3 to p3. Nodes tUl0
through tats show this sequence of decisions.'

The next step consists of showing how a problem solving episode is converted
into a storable case to be reused in future similar problem solving situations guiding
the problem solver through its search space. As it will be later presented, the case
captures the reason for earlier failure as well as the success path.

2.1.3 Justification structure

While generating a solution to a problem, the problem solver accesses a large amount
of knowledge that is not explicitly present in the final plan returned, such as the
subgoaling links among the different steps. The problem solving process is a largely
unguided search for a solution where different alternatives are generated and explored,
some failing and others succeeding.

The purpose of solving problems by analogy is to reuse past experience to guide the
generation of the solution for new problems, avoiding a completely new search effort.
Transformational analogy [Carbonell, 19831 and most CBR systems (as summarized
in [Riesbeck and Schank, 1989]) replay past solutions by modifying (tweaking) the re-
trieved final solution plan as a function of the differences recognized between the past
and the current new problem without consideration of subgoaling structure or other
decisions processed at original problem solving time. However, when the solution is
constructed during the original problem solving episode, local and global reasons for
search decisions are naturally accessible. A final solution represents a sequence of
operations that corresponds only to a particular successful search path.

Derivational analogy aims at capturing that extra amount of knowledge present
at search time, by compiling the justifications at each decision point and annotating
these at the different steps of the successful path. When replaying a solution, the

'It is worth noticing that the problem solver can use efficient methods, like dependency-directed

backtracking, to significantly reduce the search effort of its means-ends analysis cycle [Blythe and
Veloso, 1992]. These methods in general do not capture domain specific control knowledge such
as goal interactions, and the machine learning approaches developed for problem solving automate
the process of acquiring that knowledge. In principle, best performance should be obtained by a
combination of these synergistic methods.

18 CHAPTER 2. OVERVIEW

derivational analogy engine reconstructs the reasoning process underlying the past
solution. Justifications are tested to determine whether modifications are needed,
and when they are needed, justifications provide constraints on possible alternative
search paths. In essence, derivational analogy can benefit from past successes, failures,
and interactions.

Returning to the example, the problem solving trace of Figure 2.3 can also be
represented as an or-tree as shown in Figure 2.4. The search nodes corresponding
to the solution found are the solid rectangles while the dashed ones represent the
other nodes explored that A to failures. The node numbering represents the order
of search expansion corresponding to the trace in Figure 2.3.

tul

(do.)

trn2

tn3

(inside-truck ob4 tr9)

tulO ,,,!tn4

load-truck ob4 tr9 Qoa-!rck ob4ptr93) ..

I ,tnlI - -- tn--t---------------.

tn2 tn6

(drive-truck tr9 a3 p3) Cunload-airplane ob4 plla3y s.ul..oad-truck ob4 tr a

tn-3 t n . . ----- Failure - goal loop

DRIVE-TRUCK tr9 a3 p3 Qnsimde-airplane ob4 tr9 pll), (inside-truck ob4 tr9)

tnl4 Wn8-

LOAD-TRUCK ob4 tr9 p3 , (load-aiplane ob4 pl a&3)

tn15 Failure - goal loop

(-FINISH-) (at-obj ob4 a3)

Figure 2.4: The search episode of Figure 2.3 represented as a search tree - the numbering
of the nodes shows the order of expansion

Figure 2.5 shows the case generated from the problem solving episode shown in
Figure 2?3 The entire search tree is not stored in the case, but only the annotated

2.2. AUTOMATIC CASE STORAGE 19

decision nodes of the final successful path. The subgoaling structure and the record
of the failures are annotated at the nodes of the solution path. Each goal is a precon-
dition of some operator and each operator is chosen and applied because it is relevant
to some goal that needs to be achieved. The alternatives that are explored and failed
are stored with an attached reason of failure.

ci cn2 cn3

(inside-truck ob4 tr9) (load-truck ob.4 trg p3) (a&t-truck tr9 p3)
:precond-of user :relevant-to cni precond-of cn2

:sibling-ops
((load-truck ob4 tr" &3)

(goal-loop (inside-truck o1>4 tr9))
(goal-loop (at-obj ob4 a3)))

L cn4 cn5
Cns

(drive-truck tr9 &3 p3 (DRIVE-TRUCK tr9 a3 p3) (LOAD-TRUCK ob4 tr9 p3)
:relevaut-to cn3 :chomen-at cn4 :chomen-at cn2

, Figure 2.5: The resulting generated case

As an example, node cn2 corresponds to the search tree node tnlo (see Figure 2.4).
This search node has a sibling alternative tn4 which was explored and failed. The
failed subtree rooted at tn4 has two failure leaves, namely at tn8 and tn9. These
failure reasons that support the choice of right step at node tnl0 are annotated at
the case node cn2. At replay time these justifications are retested and early pruning
of alternatives, reducing therefore the future search effort.

In summary, automatic case generation occurs by extending the general problem
solver with the ability to introspect into its internal decision cycle, recording the
justifications for each decision during its extensive search process. Examples of these
justifications are: links between choices capturing the subgoaling structure, records
of explored failed alternatives, and pointers to applied control knowledge. A case,
i.e., a stored problem solving episode, consists of the solution trace augmented with
these annotations.

2.2 Automatic case storage

The episodic problem solving experience captured in a case is stored into a library
of cases. One of the important issues to address in organizing the case library is the
issue of identifying the appropriate features to use as indices for the cases. The im-
mediate indices are the initial state description and the goal statement, as a problem

20 CHAPTER 2. OVERVIEW

is directly identified by these. In this section the example is pursued to show how a
case corresponding to a particular solution found is indexed by its goal and by the
features of the initial state that are relevant to the solution.

2.2.1 Foot-printing the initial state

It is a well recognized difficulty to to identify the relevant features of a world config-
uration with respect to achieving a particular goal. The example shows the approach
I develop to foot-print the set of features of the initial state as a function of the goal
statement and of the particular solution encountered.

By following the subgoaling links in the derivational trace of the solution path, the
system identifies for each goal the set of weakest preconditions necessary to achieve
that goal. It creates recursively the foot-printed state until the initial state is reached
for the goal statement, by doing a goal regression for the goal conjuncts, i.e., projecting
back each goal's weakest preconditions into the literals in the initial state. The literals
in the initial state are categorized according to the goal conjunct that employed them
in its solution. Goal regression acts as an immediate episodic explanation of the
successful path.

(((at-obj ob4 p3) (inside-truck ob4 tr9))
((at-truck tr9 a3) (inside-truck ob4 tr9))
((same-city a3 p3) (inside-truck ob4 tr9))
((at-obj ob7 a3) nil)
((at-airplane pll a3) nil))

Figure 2.6: The foot-printed initial state for the problem exil corresponding to the case
shown in Figure 2.3

Figure 2.6 shows the foot-print of the initial state for the example problem. It
shows a list of the literals in the initial state each one associated with the goals that
it contributed to achieve. Note that the package ob7 and the airplane pl1 are not
in the foot-print of (inside-truck ob4 tr9) as they are not in its subgoaling chain
(represented in the figure as nil).

Parameterizing the situation

In order to allow transfer between different instances of the same classes of objects,
the goal is parameterized as an index to the case. The instances in the episodic case
are substituted by variables of the same class. The instances used in the foot-printed
initial state are also parameterized. The case is indexed through its goal and the

2.2. AUTOMATIC CASE STORAGE 21

foot-printed initial state. A case header records the substitution from the instances
to variables.

Figure 2.7 sketches the contents of the memory after the case of Figure 2.5 has
been stored. Variables are in brackets and their prefix identifies the class the variables
belong to: p stands for package (or object), t stands for truck, po for post office,
ap for airport, and a for airplane. Each memory node is identified by a name, in
particular state-1 for the node in Figure 2.7. The memory nodes point to the case
stored. In this example the solution to the problem exi is stored in a case designated
case-exl-2.2

(state-i)
,(at-obj <p35> <p015>)

S(at-truck <t42> <ap5O>)
C(inside-truck <(35> "2> same-city <ap5O> <po15>)

(it 3 <t42>) (case-ex 1-2)

Figure 2.7: Contents of the case library after storing problem exil

The parameterized goal (inside-truck <p35> <t42>) is the top level index for
the case. This goal index points to a discrimination network that contains the foot-
printed initial state to index the case (the case in this example is named case-exl-2).
The substitution ((<p35> . ob4) (<t42> . tr9) (<po15> - p3) (<ap5O>
a3)) is generated when parameterizing the problem solving situation.

To show the role of the discrimination network for the initial state, I consider a
sequence of three additional problems. The next problem is another simple one-goal
problem and the next subsection shows two additional two-goal problems. I skip the
case generation details for these problems and concentrate on showing the contents
and indices of the case library after the corresponding cases are stored.

2.2.2 Introducing into memory another one-goal case

Consider the problem ex2 in Figure 2.8 where an object ob2 must be inside of an
airplane p17. The object is initially aL an airport a5 ready to be loaded into the
airplane. The airplane is at a different airport all.

As the object is already at an airport the solution to this problem is to fly the
airplane into the airport where the object is at, namely a5 and then load the object
into the airplane. The search space that the problem solver explores to find this
solution could involve considering moving the object first to the airplane's location if

2See Figure 5.15 for a schematic description of the memory indexing.

22 CHAPTER 2. OVERVIEW

(has-instances (state (and (goal

(OBJECT ob2) (at-obj ob2 aS) (inside-airplane ob2 plT))

(TRUCK trl) (at-airplane p17 all)
(AIRPLANE p17) (same-city all phl)
(AIRPORT a5 all) (same-city aS p6)))
(POST-OFFICE p5)
(CITY cS cll))

(a) (b) (c)

Figure 2.8: Example problem ex2: (a) class distribution of instances, (b) initial state, :c)
goal statement

there were more airplanes available. The domain theory does not restrict the problem

solver from exploring this hypothesis. In fact this could be the more efficient solution

to the problem in a more complex situations with more airplanes and more packages

to reallocate.
Figure 2.9 (a) shows the solution returned for this problem while Figure 2.9 (b)

shows the foot-printed initial state.

:solution '(:state-goal '(
(fly-airplane p17 all aS) ((at-obj ob2 a6) (inside-airplane ob2 plT))
(load-airplane ob2 p17 aS) ((at-airplane p17 all) (inside-airplane ob2 pl 7))
(*finish*)) ((same-city all p1l) nil)

((same-city aS p5) nil))
(a) (b)

Figure 2.9: Problem ex2: (a) solution, (b) foot-printed initial state

The memory is expanded with one more case. Figure 2.10 shows the indexing of

this new case. The contents of the new memory node state-2 is the foot-printed

initial state of the solution.

[(state-2) 1
at-obj <p25> <ap29>) |

.(inside-airplane <p25> <aL0> at-airplane <a70> <ap2>)
__insde-a ____ane_<p25> case-eA2-1)

Figure 2.10: Additional contents of the case library after problem ex2

2.2.3 Storing in memory two additional two-goal problems

The problems below illustrate how the storage mechanism handles multiple-goal prob-
lems. (The details of the case generation are skipped once again.)

2.2. AUTOMATIC CASE STORAGE 23

Figure 2.11 shows a two-goal problem where one object ob10 must be taken to
an airport aS, as represented in the goal conjunct (at-obj obl0 aS) and another
object obli must be inside of the truck tr5, as represented in the goal conjunct
(inside-truck obli tr5).

(has-instances (state (and (goal (and
(OBJECT oblO obil) (at-obj obil p6) (at-obj oblO aS)
(TRUCK tr4 tr5 tr6) (at-truck tr6 aW) (inside-truck obil trS)))
(AIRPLANE p130) (inside-truck oblO tr4)
(AIRPORT aS a6) (at-truck tr4 pS)
(POST-OFFICE p5 p6) (at-truck tr5 aS)
(CITY cS c6)) (at-airplane p130 a6)

(same-city a6 p6)
(same-city aS p6)))

(a) (b) (W)

Figure 2.11: Example problem ex3: (a) class distribution of instances, (b) initial state,
(c) goal statement

Figure 2.12 (a) shows the solution encountered for this problem while Figure 2.12 (b)
shows the foot-printed initial state.

:solution '(: state-goal '(
(drive-truck tr4 p5 aS) -((inside-truck obiO tr4) (at-obj oblO aS))
(unload-truck oblO tr4 aS) ((at-obj obil p6) (inside-truck obli tr6))
(drive-truck tr6 a6 p6) ((at-truck tr5 a6) (inside-truck obil tr5))
(load-truck obll tr6 p6) (Cat-truck tr4 p6) (at-obj ob1O aS))
(drive-truck tr6 p6 a6) ((at-truck tr6 a6) (inside-truck obli tr6))
(unload-truck obil tr6 a6) ((same-city p5 aS) (at-obj oblO aS))
(load-airplane obll p130 a6) ((same-city a6 p6) (inside-truck obli tr5))
(fly-airplane p130 a6 aS) ((at-airplane p130 a6) (inside-truck obli trS)))
(unload-airplane obll p130 aS)
(load-truck obli tr5 aS)
(*finish*))

(a) (b)
Figure 2.12: Problem ex3: (a) solution, (b) foot-printed initial state

In order to efficiently store and reuse large complex multi-goals problems the
system identifies the independent subparts of a problem solving experience. This
allows a solution to be reused for its independent subparts. I develop an algorithm
that partially orders the solution by analyzing the dependencies among the plan
steps. The connected components of the partially ordered plan determine the set
of interacting goals. Figure 2.13 shows the resulting partial order for the solution in
Figure 2.12. The nodes represent the plan steps now partially ordered with respect to

24 CHAPTER 2. OVERVIEW

each other based on precondition dependencies. The nodes labeled s and f correspond
to the start and finish plan steps respectively and are not considered when determining
the connected components of the graph.

(drive-truck) load-rudrive-J(drive-tuck) unlad-rck) -lad-airplane) (fy-airplane)` unload-airpae) lad-truck)
6 r6p6)) L(tr6 p6a6) obl1 tr6a6) 1p_3 _)(pl3 0 a6a (ob1l pl3Oa5) I{ob11 tr5Sa5)

(S) (drive-truck) (unload-truck)
(tr4 p5 a5) (oblo tr4a5) a)

Figure 2.13: Partially ordered plan for example ex3

Figure 2.13 shows that the two goals of problem ex3 do not interact as the plan
steps required to achieve each goal individually are in different connected components
of the partially ordered plan (steps s and f excluded).

In particular the object ob10 is initially inside of the truck tr4. This truck is driven
from the post office p5 to the airport a5 and obl0 is unloaded at this airport which is
the object's goal destination. The partially ordered solution shows that the two steps
(drive-truck tr4 p5 a5) and (unload-truck obl0 tr4 a5) do not interact with
the additional plan steps necessary to achieve the other goal conjunct (inside-truck
obll tr5).

The case is stored in memory indexed by the two independent goals. Figure 2.14
shows the part of the case library that is changed after the problem ex3 is solved and
stored into memory.

at-truck <742> <ap5O>case-ex1 -2)
(state-4 /,

.. same-city <ap5,0> <po15>) Istate-5)
Q:inside-truck <po35> <442>) iat-obj <p35> <p01 5>) • lat-airplane <a26> <ap50>)

at-truck <t79> <ap50>)at-truck <442> <ap36>)
(case-ex3-o)

(state-3)
Iinside-truck <p69> <t57>)|
/!(-truck <t57> <pol 4>)

. Isame-city <poo14> <ap17>)/
Q(at-obi <p69;>:<:ap17>)f [,case-ex3-O)

Figure 2.14: Cor.ents of the case library related to the new stored problem ex3

The discrimination network that stores the foot-printed initial state is indexed by
the goals that are independent.

2.2. AUTOMATIC CASE STORAGE 25

Note that before the problem ex3 is incorporated into the case library, the network
indexed by the goal (inside-truck <p35> <t42>) is as represented in Figure 2.7.
The foot-printed initial state of problem ex3 for the goal inside-truck, as shown
in Figure 2.12 (b), matches part of the foot-printed initial state stored in mem-
ory. Namely it matches the subset (a1t-obj <p35> <polS>) (same-city <apeO>
<poi5>). This subset of literals is common to both problems exi and ex3 and be-
comes the root of the discrimination network, at node (stat e-4). The remaining
two other nodes, namely (state-i) and (state-5) store the differences between the
initial states of the two problems.

An additional two-goal problem

The following additional example illustrates the situation where again two indepen-
dent conjunctive goals are solved but the memory is reorganized in a different way.
Figure 2.15 shows a problem situation similar to the one in problem ex3, where the
goals are the same but the initial location of one of the objects, obil is different.

(has-instances (state (and (goal (and
(OBJECT oblO obli) (inside-truck obil tr6) (at-obj oblO aS)
(TRUCK tr4 tr5 tr6) (at-truck tr6 a6) (inside-truck obil trS)))
(AIRPLANE p130) (inside-truck obl0 tr4)
(AIRPORT aS a6) (at-truck tr4 p6)
(POST-OFFICE p5 p6) (at-truck tr5 aS)
(CITY c5 c6)) (at-airplane p130 a6)

(same-city a6 p6)
(same-city aS p6)))

(a) (b) (c)
Figure 2.15: Example problem ex4: (a) class distribution of instances, (b) initial state,
(c) goal statement

For the purpose of illustrating the memory organization and indexing ignore
whether the problem is solved by the basic problem solver or by analogical reasoning
and consider simply that a solution to the problem was reached. Figure 2.16 (a) shows
this solution, from whose derivational trace the foot-printed initial state is derived,
as shown in Figure 2.16 (b).

Each literal is annotated with the goal it contributes to achieve. In particular the
literal (same-city a6 p6) is not used to achieve either of the goals. In fact the truck
tr6 is initially at the airport and does not need to drive among locations in the city.
Therefore no information is used about city c6's airport a6 and post office po6.

Figure 2.17 shows the partially ordered solution found. Again, the two goals do
not interact as the plan that achieves them is separated into two distinct connected
components.

26 CHAPTER 2. OVERVIEW

:solution '(:state-goal '(
(unload-truck obll tr6 a6) ((inside-truck oblO tr4) (at-obj oblO aS))
(load-airplane obli p130 a6) ((inside-truck obli tr6) (inside-truck obil tr5))
(drive-truck tr4 p5 a5) ((at-truck tr5 aS) (inside-truck obli tr5))
(unload-truck oblO tr4 aS) ((at-truck tr4 p)) (at-obj oblO a6))
(fly-airplane p130 a6 aS) ((at-truck tr6 a6) (inside-truck obll tr6))
(unload-airplane ob1l p130 aS) ((same-city p6 aS) (at-obj oblO aS))
(load-truck obll tr5 aS) ((at-airplane p130 a6) (inside-truck obil tr5))
(*finish*)) ((sane-city a6 p6) nil))

(a) (b)

Figure 2.16: Problem ex4: (a) solution, (b) foot-printed initial state

drive-truck) N 'unload-truck)•
tr4 p5 a5)) ýoblo0 tr4 a5)

() unload-tdlick)'lý,(Ioad-airplane)•lýýi'l(fly-airplane)'(nod)
obllI tr6 a6)I j .(obll1 p130 aS))' !(p130 a6 a5) •.obl Ip1n30 11)],! [,(bl tr'

Figure 2.17: Partially ordered plan for example ex4

Each discrimination network for the initial state indices is top-level indexed by the
set of goals shared by all the cases indexed by it. The case ex4 is indexed separately
by the two goals. The foot-printed initial state relevant to the goal inside-truck
is incorporated into the discrimination network that is already present in the library
indexed by this goal. This time however the initial state does not match the initial
states of the two previously solved and stored problems exi and ex3. Figure 2.18
shows the resulting memory organization with the new state node, (state-6).

Finally note that the problem ex3 and ex4 match totally with respect to the
other goal solved, (at-obj <p69> <apl7>). The system identifies the case more
interesting, i.e., more useful for reuse purposes and stores only that one. In a nutshell,
given two structurally identical cases, the case that corresponds to a shorter solution,
or that explored more nodes from the search space, is potentially more useful for the
replay mechanism. In this example the problem solving episode for problem ex4 is
found more interesting and this case is indexed instead of case-ex3-0.

2.3 Automatic case retrieval

Consider that the case library consists now of the four problems exl, ex2, ex3, and
ex4 solved and stored as shown in Figure 2.18 and Figure 2.10. The remainder of
this example illustrates the retrieval and replay mechanisms. Consider the problem

2.3. AUTOMATIC CASE RETRIEVAL 27

state-6)
inside-truck <p35> <t63>)
at-truck <t42> <ap47>)
at-truck <t63> <ap8>)
at-airplane ca24> <apS>)

((inside-truck 4V5 t2)at-tu~ck 4t42> <ap5O>)ae-4) case-exl-2)

same-city <apSo> <pol 5>) state-5)
1.at-obj <p35> <po15>). [I) , at-airplane <a26> <apSO>)

at-truck 4t79> <ap5O>)
at-tsuik 4ie> <igu6>r

(s ta te -3) (a
l (a n d

CinsT(e-truck <t9W> <(t7>)i k
(ILEat-tru)cki<tk7> <po14>)

(T F pp (same-city <114> <ap17>)
((at-obj <) > <ap1 7>)y (case-x-4) 0

Figure 2.18: Case library after eiample ex4

situation given in Figure 2.19.

(hc)sgostatmcs (statt (and (goal (and

(OBJECse ob2 o at4) (at-obj o si4 p ia) (minside-a tiplans oi2 pme)

(TRUCK trg) (at-truck the golsisi-truck ob4 tr9)an(inside- airple))

(AIobPLANE p17). (isido-truck ob2 tr9)
(AIRPORT g6 all) (at-airplane p17 all)
(POST-OFFICE p5 pll) (same-city all pll)

(CITY €5 c11)) (same-city aS pS))
(a) (b) W€

Figure 2.19: Eaample problem multi: (a) class distribution of instances, (b) initial state,
(c) goal statement

Figure 2.20 shows the output of the retrieval procedure for problem multi.. Prob-
lems exl and ex2 are returned as the two similar problem solving situations in mem-
ory to guide respectively the goal (inside-truck oh4 tr9) and (inside-airplane

ob2 p17).
Each goal is associated with a guiding past case retrieved as similar to the present

situation according to a role substitution match. The three numbers that follow cap-

ture the similarity value between the new and past situations. The goal is associated
with the state network that points to the similar case.

28 CHAPTER 2. OVERVIEW

<cl> (retrieve-analogs 'multi)

Analogs to prob multi:
(((inside-airplane ob2 p17) case-ex2-1

((<p25> . ob2) (<a70> . p17) (<ap2> all))
1 0.5 2 "state-net-2")

((inside-truck ob4 tr9) case-exi-2
((<p35> . ob4) (<t42> . tr9) (<poi5> . p5))
i 0.33333334 2 "state-net-i"))

nil
.I I>

Figure 2.20: Retrieving analogous past situations for problem multI

The analogical reasoner requests from the case library similar past situations.
The retrieval strategy is based on searching for the same interacting goals followed
by incrementally searching for a substitution that satisfies a pre-established matching
degree. The past cases are stored with instances generalized to variables of the same
class. When a case is retrieved as similar to a new situation, the partial match found
between the old and new situations defines partial bindings to the variablized past
case.

2.4 Atitomatic case replay

Figure 2.21 sketches the reconstruction solution process for problem multi guided
by the two past cases exi and ex2. The new situation is shown at the center of the
figure and the two past guiding cases on its left and right.

The new problem to be solved consists of a two-conjunct goal, namely to load an
object ob4 into a truck tr9 and to load another object ob2 into an airplane p17. The
retrieval procedure returns the two past cases exi and ex2 each partially matching one
of the goal conjuncts. The figure shows the guiding cases already with the variables
substituted by the matching bindings. The case represented on the left, namely the
case to solve problem exi, corresponds to the situation where an object was also to
be loaded into a truck. However this truck was at the airport of the city and not at
the post office. The case represented on the right, namely the case to solve problem
ex2, corresponds to a situation where an object is to be loaded into an airplane and
the object is already at the airport.

2.4. AUTOMATIC CASE REPLAY 29

1a (tua.Ide-truck ob4 tr9) *I (lnald..truck ob4 IO

onprecond-of COO :procornd.@f aD

C03 (lOad-truck @b,4 trG p6) a3 (load-truck obol tro p8S)

:relevant-to Cal :relevant-to &I
:sibling-ope ((load-track ob4 IrS <apT>) _________________

(goal-loop (imiside-truck .64 it.)))

1.3 (LOAD-TRUCK ob4 trg p5)
3m (at-truck tr9 p&)

Iprca m~ n4 . (lnslde-alrplana, ob2 p17) om Inleaipan 3 p17)

:precoud-of n0 :prscoad-of cuO
c4 (drive-truck trV <apt> p8) c

Icleantt cu (load-airplane @62 plt all) c2 (load-aiwpiaae @62 pit all)

:rolevaat-to a4 :reievaat-to Cal

c.3 (DRIVE-TRUCK tr9 <ap7> p8)
.6 (at-obj ob2 all) rc.3 (at-arplane pl7 all)

c.4 (LOAD-TRUCK .64 t;_ p5-)7 / 1 procomd.of aS I Precoud-of ca2

a7 (unloads-truck ob2 are sa) cn4 (fly-airpiano pit <&pal>a)

:relevant-to &S :relevant-to ca3

.8 (at-ruck tug a&)

:precoad-of a7 rcm (F'LY-AIRPLAINE p1atIT all a)

n9 (drive-truck: tre p8 as) c.5 (LOAD-AIRP -LANE o62 p17 .5)
:releyaat-to as

.10 (DRIVE-TRUCK trG p$ aS)J

-IlI (UNLOAD-TRUCK .62 t S

.12 (at-airplaneo pit aSl)

:precond-of a5

n.13 (fly-airplanet p&It al a&)

:relevant-to %12

n14 (FLY-AIRPLANE plt &Ill a&) '

n15 (LOAD-AIRPLANE @62 pft ag) .-

Figure 2.21: Following multiple cases - Serial merging during derivational replay

The transfer occurs by interleaving the two guiding cases and performing any
additional work needed to accomplish remaining subgoals. Record of past failures
helps pruning alternatives ahead. In particular, the case nodes Icn3 through cn5 of
the left case are not reused, as there is a truck already at the post office in the new
problem. On the other hand, the nodes n6 through nil correspond to unguided
additional planning work done in the new case, as the object ob2 needs to be brought

30 CHAPTER 2. OVERVIEW

to the airport a5.
Finally notice that, at node n2, the replay mechanism prunes out an alternative

possible suitable operator, namely to load the truck at any airport, because of the
recorded past failure at the node cn2 from the left case. The recorded reason for that
failure, namely a goal-loop for the goal (inside-truck ob4 tr9), holds again in the
new situation, as that goal is in the current set of open goals, at node n1.

The subgoaling structure stored at the past cases defines which case should be
followed next. (In this example the cases are serially merged to make this overview
presentation simple. Chapter 7 discusses several other merging strategies that are
used and explored in the thesis.) In particular, for the exploratory merging strategy
used in the extensive experiments, when there is no knowledge specifying which case to
follow, the replay mechanism arbitrarily decides on the case to pursue. The empirical
tests (see chapter 8) show interestingly that the random behavior allows innovative
merging of past cases leading to solutions of a better quality in several situations.

Storing the new solved problem into memory

The storage method applies now to this new problem solved by analogy. The inde-
pendent subparts of the case are identified by the algorithm that partially orders the
case. Figure 2.22 shows the output of this algorithm. The graph shows only one con-
nected component which means that the two goals interact and are not independent
with respect to this particular solution constructed. This is the situation because the
resources are shared, namely the truck tr9 and the airplane p17.

(fly-airpane p17 all• as)•

Figure 2.22: Partially ordered plan for example multi

Figure 2.23 represents the case as it is stored in memory in a separate discrimi-
nation network indexed by the conjunction of the two interacting goals.

The system is ready to restart the process again. When new problems are proposed
to the problem solver, the retrieval procedure searches the case library for similar
past situations, the extended analogical problem solver replays the retrieved cases
and generates the case to be stored from its problem solving episode. The new case
is indexed by the set of interacting goals and by the relevant initial state and stored
into the case library.

2.5. SUMMARY OF THE EXAMPLE 31

I'state-7)
Iinside-truck <p58> <tS>)
J at-obj <>41 > <p0:61 >)

J at-truck <t6> <po61 >)
.- ./ Isamne-aity <poo61 > <ap2g>

[!inside-airpllane <p58> <a2:5>)/ Iat-airplane <a2.5> <ap9 >)
ý,inside-ltuck <1p41> <t6>) Lcase-multl -100)

Figure 2.23: Memory after example mu11

2.5 Summary of the example

This example run illustrates the different phases of the analogical reasoner, to wit:

"* A problem is given to the system to be solved. The problem solver generates a
case from the problem solving experience by annotating it with the justifications
for the decisions made during the search process.

"* To store a generated case the system identifies the foot-printed initial state, i.e.,
the relevant literals of the initial state that contributed to the achievement of
the different goals.

" Furthermore, by partially ordering the solutions for multiple-goal problems, the
independent subparts of the cases are determined and the corresponding sets of
interacting goals are used to index the case.

" When a new problem is proposed to the system the problem solver retrieves
from the case library a set of analogous problem solving situations.

" The analogical problem solver replays the multiple analogous cases by merging
the steps from each case, guided by the justification structures attached to each
decision node.

2.6 A reader's guide to the thesis

Chapter 1 motivates this thesis work in the context of research at large in problem
solving and machine learning. It presents the overall approach of the thesis and

32 CHAPTER 2. OVERVIEW

states its scientific contributions. This chapter 2 on the other hand overviews the
framework developed by presenting a complete example over the several building
functional modules of the thesis illustrating the coherent way in which the different
modules correlate and communicate.

Figure 2.24 abstracts from the example the complete cycle of the analogical rea-
soner. When a new problem is given to the analogical problem solver, the case library
is searched for similar cases. These are used by the replay mechanism to guide the
search process for a solution to the new problem. The annotated solution is multiply
indexed for reuse of its independent subparts by the foot-printed initial state and the
multiple subsets of interacting goals.

After these introductory chapters the reader should be familiar with the overall
approach of this thesis and prepared for the following chapters that present in detail
the algorithms developed and the results obtained.

Chapter 3 presents the base-level nonlinear problem solver.
Chapter 4 describes how a case is generated from a problem solving search episode.

It introduces the complete justification structures annotated at the decision nodes.
Chapter 5 introduces the storage mechanism. It defines how to index the cases

and how to organize the case library. It presents also the data structures supporting
the case indexing.

Chapter 6 discusses the retrieval method. It presents the algorithms and discusses
the efficiency of the strategy.

Chapter 7 presents the replay algorithm to construct a solution to the new problem
by following and merging multiple guiding cases.

Chapter 8 shows the results in a variety of domains to which the analogical rea-
soner was applied. In particular it presents the empirical results obtained by scaling
up the system in the complex logistics transportation domain building a case library
of more than 1000 cases.

Chapter 9 discusses related work and draws bridges between the thesis and other
research efforts.

Finally chapter 10 outlines the conclusions for this thesis and discusses some future
research directions.

Each chapter is presented in a uniform way. The chapters start with a brief
motivation for the particular issue that they address. This is followed by an informal
description of the solution designed in the thesis. The chapters then present the
formal description of the algorithms, and terminate with illustrative examples and a
summary of the approach.

Finally it may be worth adding a simple explanation for the order in which the
different modules of the thesis are presented. Although the retrieval and analogical
replay are at the beginning of the analogical reasoning cycle, as shown in Figure 2.24,

2.6. A READER'S GUIDE TO THE THESIS 33
...................................... ,

.• ii

E-4

•: .t • 0--•' • .-

05

....- C4

* oo

i '

t

II..

34 CHAPTER 2. OVERVIEW

for the sake of clarity of contents, their presentation is preceded by the description
of how a case is generated (chapter 3), what is a case (chapter 4), and how a case is
indexed (chapter 5) in memory. The order of the chapters represents therefore the
evolution of the system starting with an empty case library.

A note on the terminology The terms "base-level nonlinear problem solver,"
"problem solver without analogy," "NOLIMIT," and "NOLIMIT without analogy" are

used interchangeably. They refer to the nonlinear problem solver that I developed as

presented in chapter 3.
Similarly, I use interchangeably the terms "analogical reasoner," "analogical prob-

lem solver," "NOLIMIT with analogy," and "PRODIGY/ANALOGY". They refer to the
developed problem solver that uses derivational analogy for generating, storing, re-
trieving, and replaying the accumulated cases. This analogical problem solver is an
extension of the base-level nonlinear problem solver as presented in chapters 4, 5, 6,
and 7.

Chapter 3

The Problem Solver

How to model problem solving?

A nonlinear problem solver is able to explore and exploit interactions among
multiple conjunctive goals, whereas a linear one can only address each goal in se-
quence, independent of all the others. Hence, nonlinear problem solving is desired
when there are interactions among simultaneous goals and subgoals in the problem
space. As the base-level problem solver for this thesis work, I explored a method to
solve problems nonlinearly, that generates and tests different alternatives at the op-
erator and at the goal ordering levels. Commitments are made throughout the search
process, in contrast to a least-commitment strategy [Sacerdoti, 1975, Tate, 1977,
Wilkins, 1989), where decisions are deferred until all possible interactions are rec-
ognized. I implemented a nonlinear problem solver, NoLIMIT, which follows this
approach within the PRODIGY architecture. (NOLIMIT stands for Nonlinear problem
solver using casual commitment.)

This chapter is organized in five sections. Section 1 motivates the nonlinear prob-
lem solving approach I developed with a discussion on the issues that differentiate
linear and nonlinear problem solving. Section 2 informally describes the general search
procedure used by NOLIMIT which is formalized in section 3. Section 4 illustrates the
problem solving procedure with a complete example. Finally, section 5 summarizes
the chapter.

3.1 Motivation

Consider the following idealized planning problem: given a formal description of an
initial state of the world, a set of operators that can be executed to make transitions
from one world state to another, and a goal statement, find a plan, to transform the

35

36 CHAPTER 3. THE PROBLEM SOLVER

initial state into a final state in which the goal statement is true. The goal statement
is a partial description of a desired state satisfiable by one or more states. Consider
that the goal statement is defined as a conjunction of goals. This raises the issue
of how to deal with possible interactions among the conjuncts [Chapman, 1987]. A
simple approach, followed b-, linear planners, such as STRIPS [Fikes and Nilsson,
19711, is to solve one goal at a time. A final solution to a problem is a sequence of
complete subsolutions to each one of the goals, and recursively to the subgoals. This
approach has an underlying assumption of independence among conjunctive goals.
This method can be slightly improved by allowing any permutation of the original
top-level goals to be considered. Another level of improvement is obtained if the
problem solver can reconsider any goal or subgoal that was achieved once and then
deleted while working on a different goal. The planner reaches a solution when all
the goals are true in some world state.

3.1.1 Linear problem solving

Linear planning suffers from both non-optimality and incompleteness: non-
optimality in terms of finding solutions that involve doing and undoing operators
unnecessarily; incompleteness in terms of missing a solution to problems when one
exists. Both these problems are due to the fact, mentioned above, that linear planning
works on one goal at a time. The two examples below illustrate these problems.

An example on the non-optimal character of linear planning

The problem described L low is known as the Sussman anomaly as it was identified by
Sussman in [Sussman, 1975]. Consider the blocksworld with the following operator:

9 MOVE(z,y,z) moves block x from the top of y to the top of z. y and z can be
either the table or another block. MOVE is applicable only if x and z are clear,
and x is on y. The table always has clear space. A block is clear if it does not
have any other block on top.

Figure 3.1 shows the problem. Note that the goal statement is expressed as a
conjunction of two literals. It does not fully describe the final desired state. Instead
it specifies only the conditions that must be met in order to consider the problem
solved.

A linear planner can generate two non-optimal plans as shown in Figure 3.2. These
plans are found because the linear planner can consider different permitations of the
conjunctive goals, and work cn a single goal more 'han once, i.e., admitting that

3.1. MOTIVATION 37

Initial state: Goal statement:
(on B table) 4 (and (on A B)
(on A table) (on B C))
(on C A) UU lal
(clear C)
(clear B)

Figure 3.1: The Sussman anomaly: Find a plan to transform the initial state to achieve
the goal statement.

a goal might need to be reachieved. For both plans, the initial state and the goal
statement are the ones shown in Figure 3.1.

Goal Step of the Plan State

W Goal Step of the Plan State

(on B C) (MOVE B table C) R] MB

(on A B) (MOVE B C table) M M1 (on A B) (MOVE C A table)

(MOVE C A table) I (MOVE A table B) _

(MOVE A table B) _. (on B C) (MOVE A B table) NUMB

(on B C) (MOVE A B table) A (MOVE B table C) Q

(MOVE B table C) A (on A B) (MOVE A table B) "i

(on A B) (MOVE A table B) I
Figure 3.2: Two linear plans that solve the Sussman anomaly inefficiently

The two plans differ in the choice of the first goal considered. Both plans are non-
optimal, as both have actions that are done and undone unnecessarily. For example,
in the first plan, as the goal (on B C) is selected first, B is moved from the table to
the top of C, and then moved back to the table to clear C, so that the goal (on A
B) may be achieved. Similarly, if (on A B) is selected first, A is moved to the top
of B and then back to the table, when (on B C) is considered. These inefficiencies

38 CHAPTER 3. THE PROBLEM SOLVER

arise because the linear planner forgets about the other goals while trying to achieve
a particular goal in the conjunctive set. More formally, this means that, if the goal
statement is the conjunction of goals G1, ... , Gk, the linear planner does not consider
any of the goals G.,j # i, when working on goal Gi. An optimal solution to the
Sussman anomaly is the three-step plan: (MOVE C A table), (MOVE B table C),
(MOVE A table B).

Non-optimality is a problem that could, however, be overcome by a post-processing
module that removes unnecessary steps after the planning is completed [Rich and
Knight, 1991]. It is not straightforward to think of a general way to deal with arbitrary
repetitions of the same goal and other suboptimal plan steps. Detecting loops in the
state is not a guaranteed mechanism, as a situation could occur where an operator
would always change the state but in irrelevant ways with respect to the goals. One
can say that in this particular example of the Sussman anomaly, the linear planner
is lucky to find a solution, even if non-optimal, by working repeatedly on the same
goals. In general, however, linear planners may fail drastically, as discussed below.

An example on the incompleteness of linear planning

A much more serious problem occurs when a linear planner fails to solve a problem
that could be solved if goal interactions were properly considered through interleaving
of subgoals. In the next example the linear planner fails to produce any solution at
all. Consider the set of operators given in Figure 3.3 that define the ONE- WA Y-
ROCKET domain. The operator MOVE-ROCKET shows that the ROCKET can move only
from a specific location locA to a specific location loeB. An object can be loaded
into the ROCKET at any location by applying the operator LOAD-ROCKET. Similarly,
an object can be unloaded from the ROCKET at any location by using the operator
UNLOAD-ROCKET.

(LOAD-ROCKET (UNLOAD-ROCKET (MOVE-ROCKET
(params (params (parass nil)
((<obj> OBJECT) ((<obj> OBJECT) (preconds

(<loc> LOCATIOI))) (<loc> LOCATION))) (at ROCKET locA))
(preconds (preconds (effects
(and (and ((add (at ROCKET locB))
(at <obj> <loc>) (inside <obj> ROCKET) (del (at ROCKET locA)))))
(at ROCKET <loc>)) (at ROCKET <1oc>)))

(effectcs (effecats
((add (inside <obj> ROCKET)) ((add (at <obj> <1oc>))
(del (at <obj> <loc>))))) (del (inside <obj> ROCKET)))))

Figure 3.3: The three operators defining the ONE-WAY-ROCKET domain

3.1. MOTIVATION 39

Consider the problem of moving two given objects obj I and obj 2 from the location
locA to the location loeb as expressed in Figure 3.4. (Although NOLIMIT solves much
more complex and general versions of this problem, the present minimal form suffices
to illustrate the need for nonlinear planning.)

(has-instances OBJECT objl obj2)
(has-instances LOCATIOI locA locB)

Initial State: Goal Statement:
(at objl locA) (and (at objl locB)
(at obj2 locA) (at obj2 locB))
(at ROCKET locA)

Figure 3.4: A problem in the ONE-WAY-ROCKET domain

Figure 3.5 shows the two incomplete plans that a linear planner produces before
failing. The two possible permutations of the conjunctive goals are tried without
success. Accomplishing either goal individually inhibits the accomplishment of the
other goal as a precondition of the operator LOAD-ROCKET cannot be achieved. The
ROCKET cannot be moved back to the object's initial position. An example of a solution
to this problem is the following plan: (LOAD-ROCKET obj 1 locA), (LOAD-ROCKET
obj 2 locA), (MOVE-ROCKET), (UNLOAD-ROCKET obj 1 locB), (UNLOAD-ROCKET obj 2
locB).

Goal Plan
(at obji locB) (LOAD-ROCKET objl locA)

(MOVE-ROCKET)
(UNLOAD-ROCKET objl locB)

(at obj2 locB) failure

Goal Plan

(at obj2 locB) (LOAD-ROCKET obj2 locA)
(MOVE-ROCKET)
(UNLOAD-ROCKET obj2 locB)

(at obj1 locB) failure

Figure 3.5: Two failed linear plans for the ONE- WA Y-ROCKET problem. The second
conjunctive goal cannot be achieved because the ROCKET cannot return to pick up the
remaining object.

The failure presented is due to the irreversibility of the operator MOVE-ROCKET,

'4

40 CHAPTER 3. THE PROBLEM SOLVER

combined with the linear strategy used. An operator is irreversible if it transforms
a world state Sa1d into a new state S,,w and there is no sequence of operators that
transforms the state S,,ew back into the state Sold. An operator is reversible otherwise.
Linear planners may generate non-optimal solutions in the presence of reversible
operators and may fail to find solutions in the presence of irreversible operators.
Planning with irreversible operators requires special mechanisms to avoid artificial
deadends.

3.1.2 Nonlinear problem solving

I claim that there has been some ambiguity in previous work in the use of the terms
linear and nonlinear planning. Linear planning has been used in the context of
planners that generate totally ordered plans. The discussion below shows why total
ordering is not specific to linear planners.

Linear planning refers to the following correlated characteristics:

e searching using a stack of goals, not allowing therefore interleaving of goals
at different depths of search,

e generating solutions as sequential concatenation of complete subsolutions
for conjunctive goals, and, recursively, for conjunctive subgoals.

The notion of nonlinear planning was motivated by recognizing problems like
the Sussman anomaly in a linear planner such as STRIPS [Sussman, 19751. The
approach proposed to face this anomaly consisted of deferring making decisions while
building the plan [Sacerdoti, 1975]. The result of a planner that follows this least-
commitment strategy is a partially ordered plan as opposed to a totally ordered
one, and consequently the term nonlinear plan is used. However, the essence of the
nonlinearity is not in the fact that the plan is partially ordered, but in the fact
that a plan need not be a linear concatenation of complete subplans. NoLIMIT can
generate totally ordered plans that are nonlinear, i.e., they cannot be decomposed into
a sequence of complete subplans for the conjunctive goal set. Therefore generating
totally ordered plans is not, per se, a true characteristic of a linear planner. (In fact
a totally ordered plan is itself a degenerate partially ordered one.)'

Summarizing, nonlinear planning refers to the following characteristics:

* searching using a set of goals, allowing therefore interleaving of goals and
subgoals at different depths of search,

* generating solutions that are not necessarily a sequence of complete sub-
solutions for the conjunctive goals.

tNOLIMIT can also return a partially ordered plan as a solution to a problem, by analyzing the
dependencies among the steps in the totally ordered solution encountered for that problem.

3.1. MOTIVATION 41

In both linear and nonlinear planning, the final solution can be presented as a
partially ordered plan, as one can be built from a totally ordered plan. Section 5.1
presents the algorithm to accomplish this transformation. To conclude this gen-
eral discussion about linear and nonlinear planning, the next paragraphs discuss the
complexity of using a least-commitment strategy and that of an intelligent casual-
commitment one [Minton et al., 19891.

Least-commitment and intelligent casual-commitment

In a least-commitment planning strategy, decisions are deferred until no further
progress is possible, and then all constraints carried forward are considered in mak-
ing a decision.' Typically what happens is that conjunctive goals are assumed to be
independent and worked separately, producing unordered sets of actions to achieve
the goals. From time to time, the planner fires some plan critics that check for in-
teractions among the individual subplans. If conflicting interactions are found, the
planner commits to a specific partial ordering that avoids conflicts. There may be
cases for which actions stay unordered during the whole planning process, leading
to a final partially ordered plan. In this strategy, it is NP-hard [Chapman, 19871
to determine if a given literal is true at a particular instant of time while planning,
when actions are dependent on the state of the world, as all paths through the partial
order must be verified. To avoid this combinatorial explosion, planners that follow
this least-commitment strategy use heuristics to reduce the search space to determine
the truth of a proposition.

A casual-commitment strategy corresponds to searching for a solution by gen-
erating and testing alternatives in both the ordering of goals and possible oper-
ators to apply. The planner commits to the most promising goal order and op-
erator selection, backtracking to test other orderings and selections, if and only
if a failure is reached. Using this approach, there is no problem in determining
the truth of a proposition at a certain time, as a state of the world is updated
during the search. However, in the worst case, the method involves an exponen-
tial search over the space of solutions. Like the previous approach, NOLIMIT uses
heuristics to reduce this exponential search. Provably incorrect alternatives are
eliminated and heuristically preferred ones are explored first [Newell et al., 1963,
Waterman, 1970]. The control knowledge transforms a simple casual-commitment
strategy into an intelligent casual-commitment one, leading to an intelligent explo-
ration of the different alternatives.

2Note that the convex hull decision space of all pertinent constraints can be empty (planning
failure) or contain more than one possibility (requiring search if subsequent information generates
new constraints not satisfied by the chosen decision).

42 CHAPTER 3. THE PROBLEM SOLVER

In a nutshell, least commitment corresponds to breadth-first search over the space
of possible plans, and intelligent casual commitment corresponds to best-first heuristic
search. The former derives some benefit from structure sharing among alternative
plans (the partial order) and the latter benefits from any intelligence that can be
applied at decision points - and the direct computation of the world state when
necessary. Recent research efforts [Minton et al., 1991, Barrett et al, 19911 compare
these two planning approaches and show interesting trade-offs on the efficient use of
the two methods.

3.2 NoLIMIT - The search algorithm

NOLIMIT is a nonlinear planner that follows an intelligent casual-commitment ap-
proach. As in PRODIGY's linear problem solver [Minton et al., 19891, NoLIMIT pro-
vides a rich action representation language coupled with an expressive control lan-
guage. The operators are represented by preconditions and effects. The preconditions
are expressed in a typed first order predicate logic. They can contain conjunctions,
disjunctions, negations, and both existential and universal quantifiers with typed
variables. Variables in the operators may be constrained by arbitrary functions. In
addition, the operators can contain conditional effects, which depend on the state in
which the operator is applied. A class (type) hierarchy organizes the objects of the
world.

The basic search procedure is, as in the linear planner [Minton et al., 1989], a
means-ends analysis [Ernst and Newell, 19691 backward chaining mode following a
casual-commitment search method. A basic means-ends analysis module tries to ap-
ply operators that reduce the differences between the current world and the final
desired goal state (a partial description of the world). Basically, in a backward chain-
ing mode, given a goal literal not true in the current world, the planner selects one
operator that adds (in case of a positive goal, or deletes, in case of a negative goal)
that goal to the world. We say that this operator is relevant to the given goal. If the
preconditions of the chosen operator are true, the operator can be applied. If this is
not the case, then the preconditions that are not true in the state, become subgoals,
i.e., new goals to be achieved. The cycle repeats until all the conjuncts from the
goal expression are true in the world. NOLIMIT proceeds in this apparently simple
way. Its nonlinear character stems from working with a set of goals in this cycle, as
opposed to the top goal in a goal stack. Dynamic goal selection enables NoLIMIT
to interleave plans, exploiting common subgoals and addressing issues of resource
contention. Search control knowledge may be applied at all decision points: which
relevant operator to apply (if there are several), which goal or subgoal to address

3.2. NOLIMIT - THE SEARCH ALGORITHM 43

next, whether to reduce a new subgoal or to apply a previously selected operator
whose preconditions are satisfied, what objects in the state to use as bindings of the
typed variables in the operators.

The next section presents formally this search algorithm including the procedure
for backtracking when a failure is encountered. To precede that formal description,
Figure 3.6 shows the skeleton of NOLIMIT's search algorithm without presenting
details on the actions to take upon failure.

1. Check if the goal statement is true in the current state, or there is a reason to
suspend the current search path.

If yes, then either return the final plan or backtrack.

2. Compute the set of pending goals G, and the set of possible applicable operators A.

3. Choose a goal G from Q or select an operator A from A that is directly applicable.

4. If G has been chosen, then

* expand goal G, i.e., get the set 0 of relevant instantiated operators for
the goal G,

* choose an operator 0 from 0,
* go to step 1.

5. If an operator A has been selected as directly applicable, then

"* apply A,
"* go to step 1.

Figure 3.6: A skeleton of NoLIMIT's search algorithm

Step 1 of the algorithm checks whether the user given goal statement is true in
the current state. If this is the case, then the system has reached a solution to the
problem. NOLIMIT can run in multiple-solutions mode, where NOLIMIT shows each
solution found and continues searching for more solutions, which it groups into buckets
of solutions. Each bucket has different solutions that use the same set of plan steps
(instantiated operators).

Step 2 computes the set of pending goals. A goal is pending iff it is a precondition
of a chosen operator that is not true in the state. The subgoaling branch of the
algorithm continues, by choosing, at step 3, a goal from the set of pending goals. The
problem solver expands this goal by getting the set of instantiated operators that are
relevant to it (step 4) NOLIMIT now commits to a relevant operator. This means
that the goal just being expanded is to be achieved by applying this chosen operator.

44 CHAPTER 3. THE PROBLEM SOLVER

Step 2 further determines the set of applicable operators. An operator is applicable
iff all its preconditions are true in the state. (Note that the procedure can apply sev-
eral operators in sequence by repeatedly performing step 5 in case there are multiple
applicable operators. Such situations occur when, fulfilling a subgoal, satisfies the
preconditions of more than one pending operator.) The applying branch continues by
choosing to apply this operator at step 3, and applying it at step 5, by updating the
state. The problem solver may choose to defer the application of an operator if the
effects of the operator invalidate the achievement of other pending goals.

This schematic description shows that a search path is a sequence of decisions on
goals, operators, and applied operators. A search path is therefore defined by the
following regular expression: (goal chosen-operator applied-operator)*.

The next section formalizes the search tree, the search and the backtracking pro-
cedures. The full analogical problem solver is an extension of this basic problem
solver as I will describe in the coming chapters of the thesis. The formalization below
facilitates the presentation of these extensions, namely in the problem solving intro-
spection and annotation capability (see chapter 4) and in the replay mechanism (see
chapter 7).

3.3 Formal definition of the problem solving pro-

cedure

The problem solving procedure is a sequence of decisions made while searching for
a solution to a given pr(blem. Decisions correspond to search nodes organized in a
search tree.

Let a problem solving state S be the pair (S, T), where:

* S is the state of the world,

e and T is the search tree already expanded.

The search tree T is represented as a directed acyclic graph T = (N, E) [Aho et
al., 1974]. The set of nodes N represents the set of choices made along the search and
the edges capture the sequence of decisions made. The search tree has the fol'owing
properties:

* A search node n E N can be either a goal node g E G, a chosen operator node
o E 0, or an applied operator node a E A: N = G U 0 U A, and A, G and 0 are
mutually disjunct.

3.3. FORMAL DEFINITION OF THE PROBLEM SOLVING PROCEDURE 45

9 There is only one node with no incident edges, the root, which is called the start
goal node, no E G; no = (done).

* no has only one child, called the start operator node, nl E 0; n, =(*finish*).

* Every node n E N, except no has exactly one incident edge.

e A search path P is a path in the tree, i.e., P = (no, n1,. .. ,nk) iff (ni, ni) E E,
i = 0,...,k- 1,j = 1,...,k. P is of length k+ 1. There is a unique search
path from the root to every node in the tree.

Another set of facts follows from the problem solving cycle as presented in Fig-
ure 3.6:3

" A search path P is an ordered sequence of search nodes satisfying the following
regular expression: (g o a*)*.

"* A search node n E N can be either an active, failed, or suspended node. Let
AN, YN,SN be respectively the set of active, failed and suspended nodes of a
tree. Then N = AN U -FN U SN, and AN, .FN, and SN are mutually disjunct.

"* For each search tree T, there is a unique active leaf node, act, i.e.,
3' n E N : (n E AN) A (n is a leaf). This such unique n is the active leaf,

act.

"* The active search path, 7P, is the unique path from the root, no, to act.

"* A node is active if it is in the active search path, i.e.,
Vn E N : (n E P) =} (n E AN).

The problem solving procedure generates a sequence of problem solving steps.
The problem solving step function, step, maps problem solving states into problem
solving states, i.e., step: S x T --* S x T. Figure 3.7 defines the stepping procedure
executed by the problem solver.

The steps of the procedure in Figure 3.7 describe the expansion of the search tree.
They capture two main phases of the problem solving stepping, namely the expand
and the commit ones:

expand : Generate the children of the active leaf node act; these children
represent the possible next steps in the search procedure - step 1.

'These facts are declarative and their procedural meaning is described by the problem solving
algorithms presented next.

46 CHAPTER 3. THE PROBLEM SOLVER

Input : A search tree T = (NE), sets .AN,YN,SN of the active, failed, and suspended

search tree nodes, and act, the active leaf node.
Output : An expanded search tree T' = (N',E'), now sets AN,,YFNSN, of the new active.

failed, and suspended search tree nodes, and a new active leaf node.

procedure ProblemSolvingStep (N, E, AN, FN, SN, act):
1. children.-set ,- Generate-Children (T, act)
2. if children-set = 0

then
3. Return Backtrack..Path (N,E,ANYFN,SN, act, no-choices, children-set)

else
4. N' = NU children-set
5. E = E U {(act, n) : n E children-set)
6. '= (N', E')
7. termination.reason +- CheckTerminationReason (AN, act)
8. case termination-reason
9. success
10. Return Success (N,E,AN,.YN,SN, act)
11. failure
12. Return Backtrack-Path (N, E, AN, FN, SNU children-set, act,

termination-reason, 0)
13. otherwise
14. St = SNU children-set
15. Return PursueActive-SearchPath (act, children-set, T')

Figure 3.7: Problem solving stepping

commit : Choose the new step from the set of possible ones; step 10 captures
the successful termination of the search procedure, step 15 shows the
situation where the active search path is pursued, and steps 3, and 12
show the situations where backtracking is required.

Figure 3.8 describes the first of these phases, namely the procedure to generate
children for the different kinds of search nodes.

According to the fact that a search path is a sequence of nodes (g o a*)*
the child of a goal node g is an operator node o. Step 4 of the procedure in
Figure 3.8 calls a procedure to compute all the possible children operator nodes.
ComputeRelevantInstantiatedOperators (act, T, D) identifies the operators
(or/and inference rules) that have an effect that unifies with the goal at the active
goal node, act. These operators are the relevant operators to the goal. This means
that if when applied their effects are such that the goal is achieved, i.e., it becomes
true in the new state, The implementation of this procedure involves the development

3.3. FORMAL DEFINITION OF THE PROBLEM SOLVING PROCEDURE 47

Input :A search tree T = (N, E), the active leaf node act.
Output : A set of the search children available.

procedure Generate-Children (T, act):
1. V 4-- the domain theory: operators, inference rules, functions, and control rules.
2. case act
3. goal node
4. Return Compute-.RelevantInstantiated_-Operators (act, T, D)
5. otherwise
6. pending-goals-set +-- Compute-PendingGoals (act, T)
7. applicable.operators-set +- Identify_-Applicable -Operators (act, T)
8. Return pending.goals.set U applicable.operators-set

Figure 3.8: Generating the children for a problem solving search tree

of matching and unification techniques. 4

Once again according to the sequence of nodes (g o a*)*, for each search path, the
child of an operator o or of an applied operator a is either a goal node or an applied
operator. Step 6 of the procedure in Figure 3.8 calls a procedure to compute the set
of pending goals. In the active search path, the active operator nodes correspond
to the operators that were not yet applied to the state. ComputePendingGoals
(act, T) identifies all the preconditions of that set of active operator nodes that are
not true in the current state. This is the new set of pending goals, i.e., the set
of goals that must be achieved in order that the chosen operators may be applied.
The procedure IdentifyApplicable-Operators (act, T) at step 7 identifies the
applicable operators from the set of active operator nodes. An operator is applicable
ifi all of its preconditions are true in the state. The set of pending goals and applicable
operators is returned as the children nodes for the problem solving active search leaf.

Figure 3.9 shows the procedure to commit to a new choice from the set of gener-
ated children. This choice is controlled by the control knowledge available. This is
encapsulated in the call to the procedure Controlled-Choice. The extended analog-
ical problem solver considers the guiding cases for the controlled decisions in addition
to (or instead of) control rules.

The control knowledge available may reduce the set of possible choices to the
empty set. In this situation backtracking is needed as the search cannot be pursued
further from this point. The next section describes the failing and backtracking
procedure. Section 3.3.2 discusses the controlled decision making procedure.

4 A recent research effort in the PRODIGY group focuses on developing efficient matching algorithms
(Wang, 1992].

48 CHAPTER 3. THE PROBLEM SOLVER

Input A search troe T = (N,E), the active loaf node get, and the set of children nodes,
ckildrve.aet returned by Generate-Children.

Output : en expanded search tree T' = (N',E'), now sets .NI'.N',SN' Of the new active,

failed, and suspended search tree nodes, and a new active leaf node.

procedure Pursue.ActiveSearch-Path (act, children-set, T):
1. case act
2. goal node
3. new.activeileaf - Controlled_-Choice (operator, children-set,T)
4. otherwise
5. applicable-ope - {n E children-set: n is an applicable operator node}
6. pending-goals 4- {n E children-set: n is a goal node}
7. if applicable.ops 6 0

then
8. apply-or-subgoal 4-- Controlled_-Choice (apply-or-subgoal, children-set, T)
9. case apply-or-subgoal
10. apply
11. new-active-leaf -- Controlled_-Choice (apply, children-set, T)
12. Apply-Operator (new-active-leaf)
13. subgoal
14. new-active-leaf +- Controlled -Choice (goal, children-set, T)

else
15. new-activeleaf +- Controlled_-Choice (goal, children-set, T)
16.if new-active-leaf
17. then Update..NodeStatus (new-active-leaf, T)
18. else Backtrack-Path (T, act, 0)

Figure 3.9: Committing in the active search path

3.3.1 Failing and backtracking

A cause for failure is reaching a subgoal that is unachievable for lack of relevant
operators, in which case the path fails and is abandoned.

In addition NoLIMIT considers other failures that propose abandoning a search
path. The two main ones follow:

"* Goal loop - If a subgoal is generated that is still pending earlier in the path,
then a goal loop is recognized.

"* State loop - If applying an operator generates a world state that was previously
visited, then a state loop is recognized.

3.3. FORMAL DEFINITION OF THE PROBLEM SOLVING PROCEDURE 49

Figure 3.10 describes the procedure to backtrack in a particular search path.
The problem solver uses a default chronological backtracking strategy that can be
overwritten by specific backtracking control guidance.

Input : A search tree T = (N,E), sets AN,..N,SN of the active, failed, and suspended

search tree nodes, act, the active leaf node, the termitation-'easaon by which

backtracking was invoked, and the set of children of act.

Output : An expanded search tree T' =- (N',E'), neW Sets AN,'D,-N, S
N' of the new active,

failed, and suspended search tree nodes, and a new active leaf node.

procedure Backtrack-Path (N, E, AN, FN,SN, act, termination.reason, children-set)
1. case termination-reason
2. no-relevant-operators
3. new.active-leaf - Backtrack-toDependentOp (act, T)
4. otherwise
5. new.active-leaf - Controlled -Backtrack (act, T)
6. if new.active-leaf

then
7. AN' = {n: n is in the path from the root to new.active-lea/I
8.)N' = FN U children.set U (AN \ AN')
9. SN' = SN \ {new.active-leaf}

else
10. Exhaustive-SearchFailure

Figure 3.10: Backtracking in a search path of a problem solving search tree

When there are no relevant operators, step 3 shows that NoLIMIT backtracks
directly to the operator that requires the current active goal as a precondition. In
fact the procedure Backtrackto_-DependentOp is more careful in finding the
correct backtracking point. If an applied operator node is found :n the search path
that is responsible for the deletion of the current goal literal from the state, then
the algorithm considers the choices alternative to applying the deleting operator.
The default backtracking strategy otherwise is chronological backtracking. However
NOLIMIT has the ability to call backtracking control rules - step 5 - that accept (or

reject) a particular backtracking point as a good (or bad) one, thus performing a better
allocation of resources (bindings) and permitting dependency-directed backtracking
or other disciplines that override the chronological backtracking default. When a
backtracking choice point is found, an alternative choice is considered and the search
proceeds exploring this new alternative.

50 CHAPTER 3. THE PROBLEM SOLVER

3.3.2 Control knowledge

The search algorithm involves several choice points, namely:

"* What goal to subgoal, choosing it from the set of pending goals -
steps 14, 15, Fig. 3.9.

"* What operator to choose in pursuit of the particular goal selected -
step 3, Fig. 3.9.

"* What bindings to choose to instantiate the selected operator - step 3, Fig. 3.9.

"* Whether to apply an applicable operator or defer application and continue sub-
goaling on a pending goal - step 8, Fig. 3.9.

"* Whether the search path being explored should be suspended, continued, or
abandoned - step 7, Fig. 3.7.

"* Upon failure, which past choice point to backtrack to, or which suspended path
to reconsider for further search - steps 3 and 5, Fig. 3.10.

Decisions at all these choices are taken based on user-given or learned control
knowledge to guide the casual commitment search. Control knowledge can select,
reject, prefer, or decide on the choice of alternatives [Minton et al., 1989, Veloso,
19891. This knowledge guides the search process and helps to reduce the exponential
explosion in the size of the search space. Previous work in the linear planner of
PRODIGY uses explanation-based learning techniques [Minton, 1988] to extract from
a problem solving trace the explanation chain responsible for a success or failure
and compile search control rules therefrom. In this thesis, I develop a case-based
approach that consists of storing individual problems solved in the past to guide all
the decision choice points when solving similar new problems. The machine leai:iing
and knowledge acquisition work supports NOLIMIT's casual-commitment method, as
it assumes there is intelligent control knowledge, exterior to its search cycle, that it
can rely upon to take decisions.

3.4 An example: solving a one-way-rocket problem

The example below shows how NOLIMIT searches for a solution to the ONE-WAY-
ROCKET problem introduced earlier (see Figures 3.3 and 3.4) tracing the expansion
of the search tree.

3.4. AN EXAMPLE: SOLVING A ONE- WA Y-ROCKET PROBLEM 51

Figure 3.11 shows an actual trace output by NOLIMIT. Operators in upper-case
con--.spond to the applied operator nodes. The annotations "ops-left", "goals-left".
and "applicable-ops-left" refer to the alternative choices still left to pursue at the
corresponding search level. When several alternatives are available one was selected
randomly, as no other specific control knowledge was provided.

The trace shows that three search paths are explored. The first search path
(with 11 nodes, tnl through tull) fails due to a goal loop encountered when trying
to work on the operator (load-rocket obj 1 locB). This goal loop is encountered
by the procedure CheckTerminationReason (see step 7 in Figure 3.7). This
failure results in calling the procedure Backtrack..Path, which in the absence of
any backtracking control knowledge, backtracks chronologically to the alternative
(load-rocket objl locA) (see step 11 of the second search path). This operator
has the precondition (at rocket locA) that becomes now a subgoal as it is no
longer true in the state because the operator (MOVE-ROCKET) was applied at step 9.
There is however no operator that adds that goal to the state which means that
Generate-Children returns the empty set. The backtracking procedure is called
again. This time, as the termination reason is known to be that there are no relevant
operators for the goal, the procedure backtracks directly to the step that deleted
that goal (see steps 2-3 in Figure 3.10). At step 8 of the third and last search path
explored the application of the operator (MOVE-ROCKET) is postponed and the search
terminates successfully.

To illustrate the formalization, I consider two points in the search procedure and
instantiate the concepts introduced.

Step 8 of the first search path:

"* The problem solving state Ss is the pair (S8 , T8), where S8 is the state of the
world, and T8 is the expanded search tree

Ss = {(at objl locA), (at obj2 locA), (at rocket locA)}, and

T8 = (N 8 , E 8), where

N 8 = {tnl, tn2, tn3, tn4, tn5, tn6, tn7, tn8}U{tn31 ,tn51 ,tn71 ,
tn72 1}, where tnij are the unexplored alternatives at the nodes tni,
respectively, e.g., tn51 = (at rocket locB).

E8 = {(tni,tnj),i= i,...,7, j= 2,...,81

"* G8 , 08, A8 are the sets of goal, chosen operator, and applied operator nodes:

Gs= {tnl, tn3, tn5, tn7, tn3j, tn5j, tn71 , tn72}

52 CHAPTER 3. THE PROBLEM SOLVER

<ci) (nirun-prob 'rocket-2objs) 11. tnl2 (load-rocket obji loch)

Solving the problem rockot-2objs: 12. tn13 (at rocket loch)
Initial state : goals-left: ((nside obJ2 rocket))
((at obji lqacA) (at obJ2 loch) 000

(at rocket loch))
Goal statement: FAILURE - no relevant operators
(and (at obji locB) (at obJ2 loc9)) eeeeeeeeeeCee

eeeeeeeeeeeeeeeeeeeeeeStarting a now search path
Starting a search path

1. tnl (done)
1. tnl (done) 2. tn2 (*finishe)
2. %a2 (efinish*) 3. tn3 (at obji loci)
3. t&3 (at obji locB) goals-left: ((at obJ2 locB))

goals-left: ((at obJ2 locB)) 4. tn4 (unload-rocket obji loc9)
4. tn4 (unload-rocket obji locB) S. tn5 (at obJ2 locB)
6. tinS (at obJ2 locB) goals-left: ((at rocket locB))

goals-loft: ((at rocket led9)) 6. tn6 (unload-rocket obJ2 locD)
6. tsG (unload-rocket obj2 locB) 7. tW (at rocket loci)
7. Wn (at rocket ledB) goals-left: ((inside obji rocket)

goals-left: ((inside obji rocket) (inside obJ2 rocket))
(inside obJ2 rocket)) 8. tud (move-rocket)

S. UnS (move-rocket) *** .

9. t&9 (NOVE-ROCKET) 9. tu14 (inside obji rocket)
goals-left: ((insid* obji rocket) goals-left: ((inside obJ2 rocket))

(inside obJ2 rocket)) 10. taiS (load-rocket obji loch)
10. talO (inside obji rocket) ops-left: ((oad-rocket obj1 loc9))

goals-left: ((iside obJ2 rocket)) It. tniG (LOAD-ROCKET obji locA)
11. tall (load-rocket obji loc9) goals-left: ((nside obJ2 rocket))

ops-left: ((oad-rocket obji loch)) applicable-ops-left: (move-rocket)
$ec 12. ts1T (inside obJ2 rocket)

applicable-ops-left: (move-rocket)
FAILURE - goals in loop: ((at obji locB)) 13. talS (load-rocket obJ2 locA)

eeeccceeeeeeeeeeeeeeeeops-left: ((oad-rocket obJ2 locB))
Starting a new search path 14. ts19 (LOAD-ROCKET obJ2 locA)

applicable-ops-left: (move-rocket)
1. tnt (dome) 15. tn2O (ROVE-ROCKET)
2. ta2 (efinishe) 16. tn2l (UNLOAD-ROCWE obj2 locB)
3. tU3 (at obji locB) 17. tn22 (UILOAD-IOCKET obji locB)

goals-left: ((at obJ2 locB)) 18. tn23 (*FINISH*e)
4. tn4 (unload-rocket obji locB)
S. tnfi (at obJ2 locB) eeeeeeceecece

goals-left: ((at rocket locB)) This is the solution found:
6. tn6 (unload-rocket obJ2 locS)
7. ts7 (at rocket locB) (LOAD-lOCKET obji locA)

goals-left: ((nside obji rocket) (LOAD-LOCKET obJ2 loch)
(inside obJ2 rocket)) (NOTE-ROCKET)

S. tn8 (move-rocket) (UNLOAD-lOCKET obJ2 locB)
9. t09 (NOTE-ROCIET) (UNLOAD-lOCKET obji locB)

goals-left: ((Onside obji rocket) (eINISNC)
(inside obj2 rocket)) nil

10. talO (inside obji rocket) <cl>
goals-left: ((nside obj2 rocket))

Figure 3.11: Tracing NOLIMT solving the ONE- WA Y-ROCKET problem

3.4. AN EXAMPLE: SOLVING A ONE-WA Y-ROCKET PROBLEM 53

Os = {tn2, tn4, tn6, tn8}

A8 =0

e AN., FN., SN. are the sets of active, failed, and suspended search nodes respec-
tively, in the search tree Ts:

ANs = {tnl, tn2, tn3, tn4, tn5, tn6, tn7, tn8}
YN, = 0

SN. = {tn31 , tn51 , tn71 , tn72 }

e act = tn8, the active leaf.

Given this particular problem solving state, the following sequence of procedure
calls takes place, according to the ProblemSolving-Step procedure in Figure 3.7:

GenerateChildren(Ts,tn8) returns {tn9,tn9j, tn92}, with tn9 = (MOVE-
-ROCKET),tn9 1 = (inside obj I rocket), tn92 = (inside obj2 rocket).

PursueActive-Search_-Path(tn8,{tn9,tn9,, tn92},T,) returns the new
active leaf tn9 corresponding to the choice of applying the operator (HOVE-
-ROCKET) instead of continuing subgoaling on one of the alternative pend-
ing goals tn91 , or tn92.

After the operator (MOVE-ROCKET) is applied at step 9, the problem solving state
changes accordingly and the search tree parameters of the new search tree follow.

Step 9 of the first search path:

* The problem solving state S9 is the pair S9, T9, where $9 is the state of the
world, and T9 is the expanded search tree

S9= {(at obji locA), (at obj2 locA), (at rocket locB)}, and

T9 = (N9 , Eg), where

N9 = {tnl, tn2, tn3, tn4, tn5, tn6, tn7, tn8, tn9}U{tn3j, tnS1 ,
tn71 , tn72, tn9g, tn92}

E9 = {(tni,tnj), i= 1,... ,8, j= 2,...,9}

o G9 , 09, A9 are the sets of goal, chosen operator, and applied operator nodes:

G9 = {tnl, tn3, tn5, tn7, tn3,, tn51 , tn71 , tn7 2, tn91 , tn92 }

54 CHAPTER 3. THE PROBLEM SOLVER

09 = {tn2, tn4, tn6, tn8}

A9 = {tn9}

"* AN,, -FN,, SN. are the sets of active, failed, and suspended search nodes respec-
tively, in the search tree To:

AN, = {tnl, tn2, Un3, tn4, tn5, tn6, tn9}
-'N, =

SN, = {tn3x, tn51 , tnT1 , tn72 tn91 , tn92 }

"* act = tn9, the active leaf.

T1 - state changes and the nodes tn7 and tn8 are no longer active as the operator
(MOVE-ROCKET) (chosen at tn8) is applied at tn9, achieving the goal (at rocket
locB) at the node tn7. The computation of the new set of pending goals does not
consider the operator tn8 any longer as an active node. Similarly the check for a goal
loop does not consider the goal tn7 beiag therefore viable to subgoal more than once
on the same goal in the same search path.

Figure 3.12 shows the same problem solving episode of Figure 3.11 as a search
tree. It shows only the children nodes explored that succeed and fail. The children
left untried are not shown in this figure, but can be seen in the trace of Figure 3.11.
Note that NOLIMIT solves this problem, where linear planners fail (but where of
course other least-commitment planners also succeed), because it switches attention
among goals in the goal set. An example of this is when at step 5 NoLIMIT switches
attention to the conjunctive goal (at obj2 locB) before completing the first con-
junct (at objl locB). The final solution shows that the complete subplans for the each
of the two given conjunctive goals are interleaved and cannot be organized in strict
linear sequence. NOLIMIT explores the space of possible attention foci and only after
backtracking does it find the correct goal interleaving. The machine learning research
in PRODIGY explores methods to automatically learn from the problem solving expe-
rience and reduce search dramatically, converting automatically the problem solver
into an expert one.

3.5 Summary

NOLIMIT is a completely implemented nonlinear planner that uses an intelligent
casual-commitment strategy to guide its search process. The casual-commitment
method used to achieve its nonlinear character is in contrast to the least-commitment

3.5. SI•MMARY 55

(at obji locB)

(unload-rocket obji locB)

(at obJ2 locB)

(ukomI-rocket obJ2 loc8)

(at rocket locB)

(move-rocket)

(timide objI rocket) (MOVE-ROCEET)
'F V

(load-rocket obji locA) (Wide objI rockgt)

(Inside obJ2 rocket) (eAd-rockst objI eB) (lead-rcket .1j]lWcA)
* V

(load-rocket obJ2 ocA) Failure -goal loop (a rocket keA)
f (at obj] locB)

(LOAD-ROCKET obji locA) Failure- no relevant operators

(LOAD-ROCKET obJ2 locA)

(MOVE-ROCKET
(E

(UNLOAD-ROCKET obJ2 locB)

(UNLOAD-ROCKGET objilocHn)

(OFINISH*)

Figure 3.12: The search episode of Figure 3.11 represented as a search tree

strategy used in other nonlinear planners. NoLIMIT has the ability to call user-given
or automatically acquired control knowledge in the form of control rules or guiding
cases at all its choice points. The subsequent chapters of this thesis describe the
extensions of NoLIMIT into an analogical problem solver that replays past problem
solving episodes.

56 CHAPTER 3. THE PROBLEM SOLVER

Chapter 4

Automatic Generation of Cases

How to accumulate episodic problem solving experience ?

Derivational analogy is a reconstructive method by which lines of reasoning are
transferred and adapted to the new problem. The ability to replay previous solutions
using the derivational analogy method requires that the problem solver be able to
introspect into its internal decision cycle, recording the justifications for each decision
during its extensive search process. These justifications augment the solution trace
and are used to guide the future reconstruction of the solution for subsequent problem
solving situations where equivalent justifications hold true.

This chapter describes how the problem solver generates cases to be stored from
its problem solving experience. A case is a derivational trace including the relevant
decisions and justifications. Section 1 discusses the question of what to remember
and save from a problem solving episode. Section 2 presents formally the procedure
to annotate the search nodes while searching for a solution. Section 3 illustrates the
generation of a case with an example from the extended-STRIPS domain. Finally
section 4 draws a summary of the chapter.

4.1 Annotating the search path

While searching for a solution to a problem situation, the problem solver explores
a very large search space where different alternatives are generated, some failing
and others succeeding. The crucial question is what to preserve from the problem
solving search episode in order to reconstruct (parts of) the solution in future similar

.uations. The two extreme options are to remember only the final solution or
the complete search tree. While the latter option is too expensive to be pursued,
there are several approaches that follow the former one. Transformational analogy

57

58 CHAPTER 4. AUTOMATIC GENERATION OF CASES

[Carbonell, 19831 and most case-based reasoning systems (as summarized in [Riesbeck
and Schank, 1989]) replay past solutions by modifying directly a solution to a similar
past problem. The adaptation is based on the differences recognized between the
past and the current new problem. However a final solution represents a sequence of
operators that correspond only to a particular successful search path. A more general
approach involving partial replay and multiple-solution merging requires additional
structure pertaining to dependencies among the steps in the solution. Derivational
analogy aims at capturing the rationale and dependency structure underlying the
solution encountered. This implies that the reasoning links among the search steps
are remembered in addition to the final solution. As the analogical paradigm involves
reusing the past problem solving experience to guide new problem solving episodes
by reducing the level of search needed, the following two main concerns determine
what is preserved from the search tree:

1. The search information retained must respond to what is needed to
know at replay time in order to reduce search: At replay time the problem
solver needs guidance for making choices.

2. The cost of capturing the rationale must be low, i.e., no complex com-
putation such as proof-based eager explanation efforts are needed. Retain
therefore what is naturally known at search time.

To comply with these concerns, the problem solver must:

" Identify the decision points in the search procedure where guidance may prove
useful to provide memory of the justifications for the choices made. (All deci-
sions in the "glass-box" PRODIGY architecture.)

"* Use a clear "language" to capture these justifications at search time and asso-
ciate a meaning so that they can be used at replay time.

" Explain the underlying rationale following a minimal effort approach. No costly
attempt is made to infer generalized behavior from a unique problem solving
trace.

The problem solver is hence extended with the ability to identify and to record the
reasons for the decisions taken at the different choice points encountered while search-
ing for a solution. The justifications compiled at each decision point are annotated
at the different steps of the successful path. When replaying a solution, the deriva-
tional analogy engine can then reconstruct the reasoning process underlying the past
solution. Justifications are tested to determine whether modifications are needed,
and when they are needed, justifications provide constraints on possible alternatives
search paths (see chapter 7).

4. 1. ANNOTATING THE SEARCH PATH 59

4.1.1 Decision points

Each search node in the problem solving search tree, as introduced in chapter 3, is a
decision node. The choice at each node is the result of answering the choice points
identified in section 3.3.2.

Given a goal search node, the questions on the reasons why this goal is pursued
are:

"* Who needs this goal, i.e., this goal is a precondition of what operator(s)?

"* Why is this particular goal chosen out of the set of other sibling or alternative
choices available, if any?

"* Why subgoal on this goal, instead of applying an available applicable operator
(in pursuit of some different goal), if any are applicable?

" Were any of the alternative choices tried in the search that later failed? Why
did the problem solver abandon those paths? What were the reasons for the
eventual failures?

Similarly for a chosen operator node, the questions on the reasons why a particular
operator is chosen are:

e Who needs this operator? Which goal is this operator relevant to, i.e., if this
operator is applied, which of its effects matched a pending goal?

* Why choosing this particular operator out of the set of other sibling or alterna-
tive operators available, if any?

* Were any of the alternative choices tried in the search? Why did the problem
solver abandon those paths? What were the reasons for the eventual failures?

Finally for a particular applied operator node, the questions on the reasons why
this operator is applied are:

* Why applying this particular operator out of the set of other sibling or alterna-
tive choices available (other applicable operators, or other goals to pursue), if
any?

* Why apply this operator, instead of subgoaling in other pending goals, if any?

* Were any of the alternative choices tried in the search? Why did the problem
solver abandon those paths? What were the reasons for the eventual failures?

60 CHAPTER 4. AUTOMATIC GENERATION OF CASES

The problem solver is extended with the ability to capture the answers to these
questions, i.e., the justifications on why the choices are made. Justifications at these
choice points may point to user-given guidance, to preprogrammed control knowledge,
to automatically-learned control rules responsible for decisions taken, to past cases
used as guidance, or simply to search tree topology (e.g., only choice, arbitrary choice,
last choice left, etc). They also represent links within the different choices and their
related generators, in particular capturing the subgoaling structure. At choice points,
the system records the failed alternatives and the cause of their failure by enumerating
the reasons for abandoning the leaves of the subtrees rooted at the failed alternative.
The next section shows the augmented structure of the decision nodes that allows the
problem solver to annotate the justifications.

4.1.2 Justification structures at decision nodes

Figure 4.1 shows the skeleton of the different decision nodes. The different justification
slots capture the context in which the decision is taken and the reasons that support
the choice.

Goal lode Chosen Op lode Applied Op lode
:choice :choice :choice
:sibling-goals :sibling-relevant-ops :sibling-goals
:sibling-applicable-ops :why-this-operator :sibling-applicable-ops
:why-subgoal :relevant-to :why-apply
:why-this-goal :why-this-operator
:precond-of :chosen-at

:preconds
:adds
:dels

(a) Goal Decision Node (b) Chosen Operator (c) Applied Operator
Decision Node Decision Node

Figure 4.1: Justification record structure, to be instantiated at decision points during prob-
lem solving

The choice slots show the selection made, namely the selected goal or operator.
The sibling- slots enumerate the alternatives to the choice made. At a goal node and
applied operator node (see Figure 4.1 (a) and (c)), the goals left in the current set
of goals still to be achieved constitute the sibling-goals annotation. For completeness

4.1. ANNOTATING THE SEARCH PATH 61

the problem solver may postpone applying an operator whose preconditions are sat-
isfied and continue subgoaling on a still unachieved goal. These possible applicable
operators are the contents of the alternative sibling-applicable-ops slot. At a chosen
operator node, the sibling operators are the possible other different instantiated op-
erators that are also relevant to the goal being expanded, i.e., the operators that, if
applied, will achieve that goal. NoLIMIT annotates the reason why these alternatives
were not pursued further according to its search experience (either not tried, or aban-
doned due to a failure). The why- slots present the reasons (if any) the particular
decision was made. These reasons range from arbitrary choices to specific control
knowledge that dictated the selection. These reasons are tested at replay time and
are interpretable by the analogical problem solver.

The subgoaling structure is captured by the slot precond-of at a goal node, and the
slot relevant-to at a chosen operator node. At reconstruction time, these slots play
an important role in providing information that has practically no matching cost, on
one hand on the set of relevant operators for a given goal, and on the other hand, on
the set of instantiated preconditions of an operator.

Finally at the applied operator node, the slots preconds, adds and dels refer re-
spectively to the instantiated preconditions of the operator, and the literals added
and deleted to the state when the operator is applied. (All variables of the applied
operators are assigned specific objects in the state.) This information is useful to
preserve because it may be expensive to recompute it due to the powerful expressive
operator language which permits quantification on the list of preconditions and con-
ditional effects in the list of effects.1 The chosen-at slot points to the decision node
where the applied operator was initially chosen.

The problem and the generated annotated solution become a case in memory. The
case corresponds to the search tree compacted into the successful path as a sequence
of annotated decision nodes as presented in Figure 4.1.

4.1.3 The language

Within the fixed set of slots introduced in Figure 4.1, 1 designed a language to fill
those slots, capturing the reasons known to the problem solver and also allowing the
flexibility to annotate any additional external information. Chapter 7 discusses how
this language is interpreted at replay time.

'Another benefit of storing explicitly the preconditions, adds, and deletes of the instantiated

applied operators is to generate the partially ordered solution efficiently, as these explicitly represent
the dependencies amnng the plan steps (see section 5.1).

62 CHAPTER 4. AUTOMATIC GENERATION OF CASES

The choice slot The value of the choice slot is either a literal representing a goal
or an instantiated operator name.
Example:

:choice (at obj2 locB) :choice (load-rocket objl locA)

The sibling slots The value of these slots is a list of alternatives (either goals or
operators) each one attached to a list of the failures encountered and the size of their
rooted subtrees, or the annotation that they were not-tried. The failures refer to the
situations presented in section 3.3.1. They take values from the set {no-relevant-ops,
goal-loop, and state-loop} with the corresponding goal arguments.
Example:

:sibling-goals (((inside obj I rocket) not-tried 0))
:sibling-applicable-ops ((MOVE-ROCKET)

(:no-relevant-ops (at rocket locA))
(:goal-loop (at objl locB)) 5)

The subgoaling slots The goal node slot precond-of is a list of pointers to the
operator nodes for which this goal is one of their preconditions. The operator node
slot relevant-to points to the goal that needs this operator to be applied in order for
the goal to be achieved. (An operator may later prove to be relevant to more than
one goal. However the operator is chosen as relevant to a unique goal. The possible
other goals that are achieved when the operator is applied are seen as felicitous side
effects.)
Example:

:precond-of (cnl0 cn2)
:relevant-to cn3

The why slots The values for these slots, why-subgoal, why-this-goal, why-apply,
and why-this-operator can be:

select followed by a select control rule name,
prefer followed by a prefer control rule name and the alternatives it was

preferred over,
reject followed by a reject control rule name and the alternative that was

rejected in favor of this one,
case followed by the case step name that suggested the selection of the step,

function followed by the function call and its arguments which are usually
the bindings of an instantiated operator,

why-user followed by a function given by a user that may be tested at replay
time.

4.2. FORMAL DESCRIPTION OF THE ANNOTATION PROCEDURE 63

It is the why-user value that allows a user to dictate selections and attach reasons
for their selection.
Example:

:why-this-operator
((select operator pick-up-for-holding)
(function (adjacent roomi room2)))

:why-this-goal (case case-test-22-3)
:vhy-apply (why-user (prefer-apply-p))

(defun prefer-apply-p 0)
(if (applicable-ops-p)

(select decision apply)
(select decision subgoal)))

4.2 Formal description of the annotation proce-
dure

Consider that the search nodes have the structure presented in Figure 4.1. The bL..e
level problem solver is extended with the ability to assign values to the slots of the
decision nodes schemas. The antotations are done at search time when the justi-
fications are available and the annotation procedures correspond only to additional
bookkeeping. There is therefore a negligible effective time cost in extending the search
procedures with that capability.

4.2.1 Annotating the subgoaling structure

Figure 4.2 extends the base level procedure PursueActive-SearchPath as intro-
duced in Figure 3.9. As presented in section 3.3, this procedure is responsible for
committing to a new active search node from a set of possible children nodes. It is
the crucial procedure that has access at search time to the reasons why decisions are
made and particular search directions are pursued. This procedure is extended with
the steps shown in Figure 4.2 that are boxed. The annotations to the goal, chosen
operator, and applied operator nodes are done respectively, after steps 3, 12, and 15.
Steps 3a-3c, steps 12a-12g, and steps 15a-15f annotate the justifications at the chosen
operator decision nodes, the applied operator nodes, and the goal decision nodes,
respectively. Steps 3a, 12a-b, and 15b-c store the alternative choices; steps 3b, 12c-d,
and 15d-e record the reasons why the choices are made; steps 3c, and 15f anno-
tate the subgoaling links between the goals and operators; and steps 12e-g keep the
instantiated preconditions and effects of the applied operators.

64 CHAPTER 4. AUTOMATIC GENERATION OF CASES

Input :A search tree T = (N,E), the active leaf node act, and the set of children nodes,
childremnaet returned by Generate-.Children.

Output :A new active leaf node. As a side effect it annotate* the pertinent search nodes
with the reasons for the choice.

procedure Pursue-.Active-SearchJPath (act, childreia..set, T'):
1. caa.e act
2. goal node
3. new..active-deaf -Controlled-Choice (operator, children..set,r')

4. otherwise
5. applicable..ops .- In E claildren-set- n is an applicable operator}
6. pending..goas 4- In E children-.set: n is a goal}
7. if applicable..ops #6 0
8. then apply-or-subgoal ~- Controlled-.Choice (apply-or..subgoal, children..s c, TV)
9. case apply-or..subgoal
10. apply
11. new..active-leaf 4- Controlled-Choice (apply, children-.set, TV)
12. Apply-Operator (neu..active-b!af)
12a. sibling-goals (new..acti-e..leaf) +- pending-.goals
12b. sibling-applicable-ops (new-.active..leaf) - applicable-.ops \ { new-.active-leaf}
12c. why-apply (new..artiveileaf) +-- used-control ('apply-or-subgoal,)
12d. why-this-operator (new-.activeileaf) +-- used-control (applied-operator)
12e. preconds (new..active-deaf) +- get-preconda-slot
12f. adds (new .ictive-leaf) 4-- new-state \ old-state
12g. dels (new..active-deaf) +- old-state \ new-state

13. subgoal
14. new-aciive-leaf 4- Coutrolled-.Choice (goal, children-.set, T')
15. else new..active..leaf 4- Controlle4..Choi;-e (goal, chuldren..set, T)
15a. if is-a new..active-deaf goal node
15b. then sibling-goals (new-active-deaf) 4- pending-g'ials \ {new..active-leaf}
15c. sibling-applicable-ops (new-activedleaf) +- applicable..ops
15d. why-subgoal (new..active-leaf) 4- used-control (apply-or-subgoal)
15e. why-this-goal (new..active-leaf) 4- used-control (goal)
15f. relevant-to (new..activedletf) 4- needing- active-operators (new. activedleap I

16.if new..actwive-af
17. then Update-.Node-Status (new..active-leaf, T')
18. else Backtrack-.Path (T', act,@)

Figure 4.2: Committing in the active search path with annotation of the justifications at
the search decision nodes

4.2. FORMAL DESCRIPTION OF THE ANNOTATION PROCEDURE 65

4.2.2 Annotating the failures

The backtracking procedure introduced in Figure 3.10 is called when a failure or
other termination reason is encountered for some search path. The procedure Back-
track-Path is extended again with additional bookkeeping as shown in the steps
boxed after step 9 in Figure 4.3.

Input : A search tree T = (NE), sets ANYN,SN of the active, failed, and suspended

search tree nodes, act, the active leaf node, the termination-reason by which

backtracking was invoked, and the set of children of act.

Output A A new active leaf node, and an expanded search tree TV = (N',E'), with new sets

AN#,.YFN,SN,.

procedure Backtrack-Path (N, E, AN, YN, SN, act, termination.reason, children.set)
1. case termination-reason
2. no-relevant-operators
3. new-active-leaf -- Backtrack-toiDependentOp (act, T)
4. otherwise
5. new.activeleaf - Controlled-Backtrack (act, T)
6. if new-active-leaf
7. then AN' , {n: n is in the path from the root to new-active-leaf}
8. YN, YN U children-set U (AN \ AN')
9. SN' = SN \ {new-active-leaf}

9a. abandoned-sibling +- GetAbandonedSibling (new-active-leaf)
9b. corresponding-sibling-slot (new-active-leaf) + substitute in slot

(abandoned.sibling, termination-reason, size-of-failed-subtree)
for abandoned-sibling

l0else ExhaustiveSearchFailure

Figure 4.3: Backtracking in a search path of a problem solving search tree with annotation
of the failure reasons at the search decision nodes

The new active leaf is encountered by the backtracking procedure by travers-
ing the active search path up to the root. Backtracking stops when a search node
is found where there are other alternatives not yet explored which satisfy the con-
straints imposed by the backtracking control knowledge, if there is any. The procedure
GetAbandoned-Sibling returns the sibling alternative corresponding to the path
of the search that was just active and is now being abandoned. The termination rea-
son is recorded in conjunction with the abandoned sibling alternative. The extended
analogical problem solver also records the size of the abandoned subtree. This is a
rough measure of the amount of failed search effort invested on exploring the sibling
alternative. When the replay algorithm runs in an exploration mode, this measure
guides the eventual exploration of failed alternatives. If a sibling alternative failed

66 CHAPTER 4. AUTOMATIC GENERATION OF CASES

after having explored, for example 80% of the complete search tree, it may not be a
good idea to retry to explore that path. On the other hand if the cost of the failure is
much smaller, say for example 10% of the complete search tree, then it may be worth
exploring the failed alternative even when the justification for failure holds. A new
failure in that path validates more strongly the lazy failure reason recorded, while a
success refines the recorded failure reason to a more specific one.

4.3 An example in the extended-STRIPS domain

This section presents an example to illustrate some of the points of the automatic
generation of an annotated case. The extended-STRIPS domain [Minton, 1988] consists
of a set of rooms connected through doors. A robot can move around between the
rooms carrying or pushing objects along. Doors can be locked or unlocked. Keys to
the doors lay in rooms and can be picked up by the robot.2 Figure 4.4 shows some
simplified operators used in the example to be presented. As usual variables are in
brackets and types are written in upper case.

The operator GO-THRU moves the robot through a doorway, add the operator
GOTO-OBJ puts the robot next to an object when the robot and the object are in
the same room. The operators OPEN-DOOR and CLOSE-DOOR open and close a door,
respectively. A door may only be open if it is unlocked.

Figure 4.5 (a) shows the initial state and (b) the goal statement of an example
problem from the extended-STRIPS domain, say problem strips2-5. The rooms are
numbered at their corners and the doors are named according to the rooms they
connect. Doors may be open, closed, or locked. In particular, door24 connects the
rooms 2 and 4 and is locked. The door door34 is closed and, for example, doorl2
is open. The number of the boxes can be inferred by the attached description of the
initial state. Note that box3 is in room4. The problem solver must find a plan to
reach a state where door34, connecting room3 and room4, is closed, and the robot is
next to box3. The problem is simple to illustrate the complete generation of a case
corresponding to a problem solving search episode.

Without any analogical guidance (or other form of control knowledge) the prob-
lem solver searches for a solution by applying its primitive means-ends analysis pro-
cedure. Figure 4.6 shows a search tree episode to solve the problem. According
to the problem solving stepping procedure discussed in chapter 3, •,e search path
is a sequence of goals, and operators chosen and applied. For example, node cn2
is one of the user-given goal conjuncts, namely (next-to robot box3). From the

2The complete set of operators and inference rules for this domain is shown in [Carboneli et al.,
1992]1

4.3. AN EXAMPLE IN THE EXTENDED-STRIPS DOMAIN 67
(OPERATOR 00-TRUR (OPERATOR GOTO-BOX

(parans (param-
(<room&> ROON) ((<obJ> BOX)
(<roomy> (<room> IoON)))

(&ad ROON (preconds
(adjacent <roomz> <roomy>))) (and

(<door> (inroom <obj> <room>)

(and DOOR (inroom robot <room>)))
(connects <door> <roonz> <roomy>)))) (effects

(preconds ((add (next-to robot ¢obJ>))
(and (if ((<something> (or uBJZCT DOOR)))
(dr-open <door>) (next-to robot <something>)

(inroom robot <roomx>))) ((del (next-to robot <somethingW)))))))

(effects
((del (inroom robot <roomx>))
(add (inroom robot <roomy>))

(if ((<obj> OBJEC))
(holding <obj>)

((del (inroom <obJ> <roomx>))
(add (inroom <obj> <roomy>)))))))

(OPERATOR OPER-DOO (OPERATOR CLOSE-DOOR
(parans (params
(((room) ROOK) ((<room> ROOG)

(<door> (<door>

(and DOOR (and DOOR
(door-to-room <door> <room>))))) (door-to-room <door> <room>)))))

(preconds (precondo
(and (and

(inroom robot <room)) (inroom robot <room>)
(door-closed <door>) (door-open <door>)))

((door-locked <door>)))) (effects

(effects ((del (door-open <door)))
((del (door-closed <doorW)) (add (door-closed <doorW)))))

(add (door-open <door>)))))

Figure 4.4: Some operators from the extended-STRIpS domain

set of operators shown in Figure 4.4 the problem solver identifies and instantiates
the operator (goto-box box3) as a relevant one to that goal, as shown at node
cn3. This operator cannot be applied immediately as one of its preconditions is
not true, namely (inroom robot room4). This precondition becomes a new goal to
achieve and is chosen at node cn4. The search proceeds until a solution is found.
The final plan is the sequence of the applied nodes of the successful search path,
namely the nodes cn8, cnll, cn12, cnl5, =n16, cn17, corresponding to the so-
lution (GO-THRU doorl3), (OPEN-DOOR door34), (GO-THRU door34), (CLOSE-DOOR
door34), (GOTO-BOX box3), (*FINISH*).

Figure 4.7 shows schematically the complete successful solution path represented
in a table. For simplicity of representation, the decision nodes are annotated only
with their subgoaling links.

As described above, NOLIMIT starts working on the goal (next-to robot box3)
at node cn2, as the door34 is closed in the initial state. At node cn4, it subgoals

68 CHAPTER 4. AUTOMATIC GENERATION OF CASES

12 11 2

3 4 3 4

(inroom robot rooml) (Unroon boxl roomi) (and (door-closed door34)

(Unroom box2 room3) (Unroon boz3 roon4) (next-to robot box3))

(door-open door12) (door-open door13)
(door-closod door34) (door-locked door24)

(a) Initial State (b) Goal Statement

Figure 4.5: Example problem definition in the extended-STRIPS domain; The goal statement
is a partial specification of the final desired state: the location of other objects and the status
of other doors remains unspecified.

on getting the robot into room4. Now note that both room2 and room3 are adjacent

to room4. By backward chaining, NOLIMIT finds these two alternatives as rele-
vant operators to the goal (inroom robot room4), namely the operators (go-thru
door34), shown as node cn5, or (go-thru door24). The latter fails as shown in
Figure 4.6 in the failed subtree rooted at node cn4. Figure 4.8 (a) shows the com-
plete annotated decision node c=5 considering that NoLIMIT searched the alternative
(go-thru door24) before pursuing the successful operator (go-thru door34). Note
that door24 is locked and there is no key for it in the initial state. In the search episode
this failure corresponds to a subtree off of the finally successful node cn4. The ana-
logical reasoner creates a case by annotating the successful path with its sibling failed
alternatives. It attributes the reason of a failure to the last failed leaf of the searched
subtree, and also other failed leaves whose termination reasons are meaningful in the
final active search path.

After this failure, NOLIMIT pursues its search at node cn5 as shown in Figure 4.6
and Figure 4.7. It alternates choosing the relevant operator for each goal, and applying
it if all its preconditions are true in the state, or continuing subgoaling on a goal of
the new goal set.

Node cnl3 is also worth remarking and Figure 4.8 (b) shows its expansion. At
that search point NOLIMIT has the alternative of immediately applying the oper-
ator (goto-box box3), as ii becomes applicable as soon as robot enters room4 at

4.3. AN EXAMPLE IN THE EXTENDED-STRIPS DOMAIN 69

cnO: (done)

cnl: (*finish*)

cn2: (next-to robot box3)

cn3: (goto-box box3)

cn4: (Inroom robot room4)
.....................

cn5: (go-thru door34) (go- ru d~r24)

cn6: (Iroom robot rooW3) (door-open door24)

cn7: (go-thru doorl3) (open-der door24)

cn8: (GO-THRU doorl3) (- (door-loekad d~24))

cn9: (door-open door34) Failure - no relevant operators

onl. (open-door door34)

grill: (OPEN-DOOR door34)

cnl2: (GO-THRU door34)
#.

cnl3: (door-closed door34) (GOTO-BOX box3)
* V

cnl4: (close-door door34) (door-closed door34)
I, V

cnl5: (CLOSE-DOOR door34) (close-door dowr34)

cnl6: (GOTO-BOX box3) (GOTO-DOOR door34)

cnl7: (*FINISH*) Failure- state loop

Figure 4.6: A search episode to solve the problem in Figure 4.5 represented as a search

tree

node cn12, or subgoaling in the goal (door-closed door34) which became a goal

when door34 was open at node cn11. Because NOLIMIT is a nonlinear planner with

70 CHAPTER 4. AUTOMATIC GENERATION OF CASES

Node Node :ckoice :precoud :relevant
tppe number of to

goal cnO (done)
chosnn-op cal (eftniste) CnO
goal cn2 (next-to robot box3) cal

chosen-op cn3 (goto-box box3) cn2

goal cn4 (inroom robot room4) cn3
choson-op can (go-thru door34) ca4
goal cAS (inroom robot room3) cas

chosen-op ca7 (go-thru doorl3) Cn6
applied-op Cos (00-T1U3 doorl3)
goal ca9 (door-open door34) ca5
chosen-op colO (open-door door34) cas

applied-op call (OPZX-DOOR door34)
applied-op cnl2 (GO-TIWU door34)
goal cn13 (door-closed door34) cal
chosen-op cnl4 (close-door door34) cni3
applied-op cal5 (CLOSE-DOOR door34)
applied-op cai6 (GOTO-BO3 box3)
applied-op cnl7 (*FINIS9e)

Fig~tre 4.7: A simplified case corresponding to a solution to the problem in Figure 4.5; A
case is an annotated successful problem solving episode.

Chosen-operator decision node cn6 Goal decision node cnl3
:choice (go-thru door34) :choice (door-closed door34)
:sibling-rolevant-ops :sibling-goals nil

(((go-thrv door24) :sibling-applicable-ops
(:no-relevant-ops (((GOT0-BOX box3)

((door-locked door24))))) (:state-loop)))
:why-this-operator :hy-subgoal nil

((fuaction (adjacent roon3 roos4)) :why-this-goal nil
(function (connects door34 roo.3 rooa4))) :precond-of cal

:relevant-to cn4

(a) Chosen operator node cn5 (b) Goal node cn13

Figure 4.8: Zoom of some justified decision nodes

the ability to fully interleave all the decisions at any search depth [Veloso, 1989,
Rosenbloom et al., 19901, it successfully finds the optimal plan to solve this prob-
lem. Figure 4.8 (b) represents this problem solving search situation where NoLIMIT
explores first the eager choice of applying any applicable operator, namely the sibling-
applicable-op (GOTO-BOX box3). This ordering however leads to a failure, as when
returning back to close door34, after achieving (next-to robot box3), NoLIMIT
encounters a state loop. It recognizes that it was in the same state before, and back-
tracks to the correct ordering, postponing the application of the operator (GOTO-BOX

4.4. SUMMARY 71

box3), at node cn16, to after accomplishing the goal (door-closed door34).
Without guidance NOLIMIT explores the space of all possible attention foci and

orderings of alternatives, and only after backtracking does it find the correct goal
interleaving. The idea of compiling problem solving episodes is to learn from its
earlier exploration and reduce search significantly by replaying the same reasoning
process in similar situations.

4.4 Summary

This chapter presented the annotation procedure and illustrated it with an example.
The work reported in this chapter involved:

"* The elaboration of the model of the derivational trace with the identification of
the appropriate data structures for the justifications underlying decision making
in problem solving episodes.

"* The extension of the base-level problem solver to compile justifications under a
lazy evaluation approach. There, is a negligible bookkeeping cost in the extension
of the problem solver with the annotation capabilities.

"* The specification of a flexible and precise language to express the justifications
at the decision nodes.

"* The resulting automated generation of a case as a search tree compacted into
the decision nodes in the successful solution path. These are annotated with
the justifications that resulted in the sequence of correct and failed decisions
that lead to a solution to the problem.

72 CHAPTER 4. AUTOMATIC GENERATION OF CASES

Chapter 5

Automatic Storage of Cases

How to organize a case library?

The previous chapter presented how the problem solver generates cases from the
derivational trace of its problem solving search experience. A case is the final suc-
cessful search path annotated with the .justifications of the reasons the choices were
made and a record of the failures encountered. This chapter introduces the next
logical phase in the analogical reasoning process, namely how to store the episodic
knowledge generated.

The goal statement and the initial state of a problem situation define the problem
and should be used as indices for the solution case generated. A naive approach
may consider the goal statement and the complete initial state directly as indices. 1

This approach may be suited for simple one-goal problems where the initial state
is specified with a reduced set of features. However, for complex problem solving
situations with multiple goals and a very large number of literals in the initial state
the indexing mechanism must be more sophisticated for the sake of the utility of the
indices at retrieval time. I present the methods I developed for identifying a set of
appropriate indices for complex (and simple) cases.

The chapter is organized in five sections. A complete case may be a concatenation
of several independent subparts that can potentially be reused separately. The first
section presents the algorithm to transform a totally ordered plan into a partially
ordered one by analyzing the dependencies among the solution steps. The connected
subgraphs of the resulting partially ordered graph correspond to the different sets
of interacting goals. These sets are used as the goal indices for the case. Section 2

1 In chapter 8, 1 show empirical results that compare this simple approach with the more elaborate
indexing technique to be presented in this chapter.

73

74 CHAPTER 5. AUTOMATIC STORAGE OF CASES

shows how to identify an additional set of indices from the initial state. The algo-
rithm determines the relevant features of the initial state with respect to the solution
recorded in the case. Section 3 describes the resulting organization of the case library
and illustrates it with an example. Section 4 summarizes formally the overall storage
procedure. Finally section 5 concludes the chapter with a review of the main points
of the storage mechanism.

5.1 Identifying the independent subparts of a case

As chapter 3 showed, NOLIMIT produces a solution to a problem as a totally ordered
sequence of operators. Though totally ordered, these steps may not be completely
dependent on each other. Identifying the true dependencies among the steps is equiva-
lent to identifying the independent sub-solutions. I developed an algorithm to extract
a partially ordered graph from the totally ordered solution to represent the ordering
constraints that exist among the steps of the plan. The algorithm uses the instan-

tiated solution and identifies a partially ordered instantiated solution, as opposed
to using the episodic solution to generate the minimal set of generalized ordering

constraints [Mooney, 1988].
Consider a partial order as a directed graph (V, E), where V, the set of vertices, is

the set of steps (instantiated operators) of the plan, and E is the set of edges (ordering
constraints) in the partial order. Let V = {opo, op2, ... , oPn+1 }. A square matrix P
represents the graph, where P[ij] = 1, if there is an edge from opi to opj. There is
an edge from opi to opi, if opi must precede opi, i.e., opi -< opj. The inverse of this
statement does not necessarily hold, i.e., there may be the case where opi -< opi and
there is not an edge from opi to opi. The relation -< is the transitive closure of the
relation represented in the graph for the partial order. Without loss of generality,

consider operators opo and OPn+l of any plan to be the additional operators named
start and finish (see chapter 3), represented in the figures below as s and f.

Figure 5.1 shows a simple example of a partial order. Legal orderings are, for
example, (s,op1 ,op 2 ,op-j,op 4,ops,op6,f), or (s,op1 ,op5 ,op2,op6,op 3,op 4 ,f), or (s,-
opt , ops, 03,, oP2,OP6, oP4, f). The ordering (s, os5, op,0, Op3, op2, OP4, opI, f) is not legal
as op, must precede op2, op3, and op4.

5.1.1 Transforming a total order into a partial order

A plan step opi necessarily precedes another plan step opj if and only if opi adds a
precondition of opi, or opi deletes a precondition of op,. For each problem, the start
operator s adds all the literals in the initial state. The preconditions of the finish

5.1. IDENTIFYING THE INDEPENDENT SUBPARTS OF A CASE 75

P p

s f

Figure 5.1: An example of a partially ordered plan

operator f are set to the user-given goal statement. Let the totally ordered plan
T be the sequence op.,... ,op,, returned by NoLIMIT as the solution to a problem.
Figure 5.2 shows the algorithm to generate the partially ordered plan, P, from this
totally ordered one, T.

Step 1 loops through the plan steps in the reverse of the execution order. Steps 2-4
loop through each of the preconditions of the operator, i.e., plan step. The proce-
dure LastOp-ResponsibleForPrecond (one possible implementation is shown
in Figure 5.7) takes a precondition as argument and searches from the operator opi,
back to, at most the operator s, for the first operator (supporting-operator) that has
the effect of adding that precondition. Note that one such operator must be found
as the given T is a solution to the problem (in particular the initial state is added
by the operator s). All the supporting.operators of an operator opi must precede it.
The algorithm sets therefore a directed edge from each of the former into the latter.
Step 5 checks if the operator being processed is the finish operator (opn+1). It that
is the case, step 6 labels the edges in the graph from the supporting-operators to the
preconditions of the operator opn+. The procedure LabelkGoalEdge labels these
edges with the added precondition, i.e., the user defined goal conjunct. This explicitly
marks the operators directly responsible for achieving the goal statement. 2

Steps 7-10 loop through each of the delete effects of the operator. The proce-
dure AllOpsNeedingEffect searches for all the operators applied earlier in the
solution, which need, i.e., have as a precondition, each delete effect of the operator.
These are the supported.operators. Steps 9-10 capture the precedence relationships
by adding directed edges from each supportedoperator to the operator that deletes
some of their preconditions.

Steps 11-14 guarantee that the primary adds of this operator are preserved in
the partially ordered plan. An add effect is primary if it in the subgoaling chain of a

2Thia information is used to directly identify the goals corresponding to parts of the graph (see
section 5.1.2).

76 CHAPTER 5. AUTOMATIC STORAGE OF CASES

Input : A totally ordered plan T = opl,op2,...,opn, the start
operator s (opo) with add effects set to the initial state, and
the finish operator f (opn+l) with preconditions set to the user
given goal statement.

Output : A partially ordered plan represented as a directed graph
P.

procedure BuildPartialOrder(T, s, f):
1. for i 4- (n + 1) down-to I do
2. for each precond in Preconditions.of(opi) do
3. supporting-operator +-- LastOpResponsibleForPrecond (precond,s,i)
4. AddDirectedEdge (supporting.operatoropi,P)
5. ifi=n+1
6. then LabelGoalEdge (supporting-operatorf,P,precond)
7. for each del in Delete-Effects(opt) do
8. supported-operators +- AllOps -NeedingEffect (deli)
9. for each supported-operator do
10. AddDirectedEdge (supported-operatoropi,P)
11. for each add in Primary-Adds (op,) do
12. adversary-operators - Ops..DeletingPrimaryAdd (add, i)
13. for each adversary-operator do
14. AddDirectedEdge (adversarygoperatorop1 ,P)
15. P -- RemoveTransitiveEdges(P)
16. Return P

Figure 5.2: Building a partial order from a total order

user given goal conjunct. The procedure OpsDeletingPrimaryAdd identifies the
adversary-operators that, earlier in the plan, delete a primary add. Any such operator
cannot be performed after the current operator. Hence step 14 sets a directed edge
from each adversary-operator to the operator under consideration.

Finally, step 15 removes all the transitive edges of the resulting graph to pro-
duce the partial order. Every directed edge e connecting operator opi to opi is
removed, if there is another path that connects the two vertices. The procedure
RemoveTransitive-Edges tentatively removes e from the graph anA then checks
to see whether vertex opi is reachable from opi. If this is the case, then e is removed
definitively, otherwise e is set back in the graph. Step 16 returns the partial order
generated.

If n is the number of operators in the plan, p is the average number of precon-

5.1. IDENTIFYING THE INDEPENDENT SUBPARTS OF A CASE 77

ditions, d is the average number of delete effects, and a is the average number of
add effects of an operator, then steps 1-14 of the algorithm BuildPartialOrder
run in O((p + d + a)n 2). Note that the algorithm takes advantage of the given to-
tal ordering of the plan, by visiting, at each step, only earlier plan steps. The final
procedure Remove_.Transitive-Edges runs in O(e), for a resulting graph with e
edges [Aho et al., 1974]. Empirical experience with test problems shows that the
algorithm Build_-PartialOrder runs in meaningless time compared to the search
time to generate the input totally ordered plan.

An example

I now illustrate the algorithm running in the simple ONE- WAY rocket problem in-
troduced in section 3.4. NO LIMIT returns the totally ordered plan T = (LOAD-ROCKET
objl locA), (LOAD-ROCKET obj2 locA), (MOVE-ROCKET), (UNLOAD-ROCKET obji
locB) , (UNLOAD-ROCKET obj2 locB). Let opi be the ith operator in 7T. Figure 5.3
shows the partial order generated by the algorithm, before removing the transitive
edges. As previously seen, the goal of the problem is the conjunction (and (at
obji locB) (at obj2 locB)). These two predicates are added by the UNLOAD steps,
namely op4 and ops. The edges labeled "g" show the precedence requirement between
op4 and op5, and the finish operator f. The numbers at the other edges in Figure 5.3
represent the order by which the algorithm introduces them into the graph.

3 \opl: (LOAD-ROCKET objl locA)
op2: (LOAD-ROCKET obj2 locA)

Sf op3: (MOVE-ROCKET)
op4: (UNLOAD-ROCKET objl locB)
opS: (UNLOAD-ROCKET obj2 locB)

Figure 5.3: Partial order with transitive edges

As an example of some of the steps of the algorithm, note that while processing op5,
namely (UNLOAD-ROCKET obj2 locB), step 3 sets the edges 1 and 2, as the precondi-
tions of ops, namely (inside obj 1 ROCKET) and (at ROCKET locB) (see Figure 3.3),
are added by op2 and op3 respectively. When processing op3, (MOVE-ROCKET), edge 5
is set because op3's precondition, (at ROCKET locA), is in the initial state. The
edges 6 and 7 are further set by step 10, because op3 deletes (at ROCKET locA) that
is needed (as a precondition) by the earlier steps op, and op2. Step 15 removes the
traasitive edges, namely edges 1, 3, and 5. The resulting graph is returned as the
final partial order.

78 CHAPTER 5. AUTOMATIC STORAGE OF CASES

5.1.2 Goal indices

The partially ordered graph as generated by the algorithm of Figure 5.2 is a graph
with one unique connected component as all the vertices are connected through the
start and finigh vertices. These nodes are introduced however for uniformity purposes
for the algorithm and are n,)t directly part of the final solution. Consider that the
remaining operators of the plan are named the effective operatcrs. The independent
subparts of the solution are the different connected subgraphs of the partially ordered
graph of the effective operators. Each subpart achieves a subset of the conjuncts of
the initial goal statement. The goals in each subset interact with respect to the
particular plan encountered.

Definition 1 Interacting goals with respect to a particular plan:
Given
* the conjunctive goal Q = G1, G2,..., Gk, and
* the set of connected subgraphs P, = (V½, E) of the effective partially

ordered plan 'P,
let OPG, be the operator in some V•, that is responsible for achieving the goal Gi, i.e.,
the last operator to add the goal Gi.

Two goals Gi, G1 interact with respect to the solution P, iff the operators opG,
and opG, are in the same connected subgraph, i.e., 3 s : (opG, E Vc) A (opa, E K½).

A particular problem may have many different solutions. These solutions may
differ in the set of operators in the plan. Definition 1 captures goal dependencies of
a particular solution found. If the ordering constraints between achieving two goals
are dorrain dependent, then all the solutions to a particular problem will have the
two goals interacting. On the other hand the dependencies may be the result of a
particular problem solving path explored. In this case for some solutions the goals
may interact and for some others they may not.

To illustrate this difference, I discuss different plans, some with ord , "ng con-
straints that are domain dependent, and others with domain-independent ordering
constraints. In the one-way rocket domain, the goals of moving two objects to a
different location interact, because the rocket can)nly move once. This is an in-
teraction that is dependent on the domain definition. The machine-shop scheduling
domain [Carbonell et al., 1992] also constraints that holes in parts must be drilled
before parts are polished, as the drilling operator deletes the shining effect. In this
domain, the goals of polishing and making a hole in a part interact again due to the
domain definition. In this same domain, when two identical machines are available
to achieve two identical goals, these goals may interact, if the problem solver chooses
to use just one machine to achieve both goals, as it will have to wait for the machine

5.1. IDENTIFYING THE INDEPENDENT SUBPARTS OF A CASE 79

to be idle. If the problem solver uses the two machines instead of just one, then the
goals do not interact. There is a variety of equivalent examples in the logistics trans-
portation domain. In general it is not clear what use of resources is overall the best.
As an example, in the logistics domain, suppose that the problem solver assumes
that the same truck (or airplane) must be used when moving objects from the same
location into the same (or close) destiny. This becomes however more complicated
to generalize if there are capacity constraints for the carriers and the objects have
different sizes. These examples motivate the complexity of handling goal interactions
when the problem solver can find several solutions to a problem. [Perez, 1992] is a
current research effort on learning control knowledge to improve the quality of the
plans generated by the problem solver.

Figure 5.4 shows the overall procedure that determines the sets of interacting goals
that index the independent subparts of a case.

Input : A partially ordered plan P expressed as an adjacency matrix
of a directed graph (VE), with
V = {,po, op2,...,op,+1}, where P[i,j] = 1, if there is an edge from
opi to opi), and the initial goal statement G= ,G 2,...,Gk.

Output : The set of interacting goals.

procedure FindlnteractingGoals(P, g):
1. P1 ,,n +- submatrix of P with rows and columns 1 through n
2. connected-components 4- Find_-ConnectedSubgraphs(P1 ,n)
3. set.interacting-goals +- 0
4. for each component in connected-components do
5. interacting-goals +- 0
6. for each v in component do
7. goaLedge-label +- GetGoal-Edge.-Label (v, opn+i)
8. if goaLedge-label
9. then interacting-goals i-- interacting-goals U {goaLedge-label }
10. set-interacting-goals +- set-interacting-goals U {{interacting.goals}}
11. Return set-interacting.goals

Figure 5.4: Finding the set of interacting goals

The procedure FinddInteractingGoals in Figure 5.4 gets as an argument the
partially ordered solution which represents the constraints on the ordering of the plan
steps. This partial order is generated by the algorithm shown in Figure 5.2 which
returns the partial order as a matrix P. Step 1 sets the submatrix Pi,,n representing

80 CHAPTER 5. AUTOMATIC STORAGE OF CASES

the dependencies among the effective steps of the plan after removing the operators
s and f.

Step 2 finds the connected components of the directed graph P1,,, using a depth-
first search algorithm to find the spanning forest of an undirected graph [Aho et al.,
1974]. (The directed graph Pl,,, is converted into an undirected graph by making
all edges indirect.) The complexity of this step is O(max(n,e)) [Aho et al., 1974]
where n is the number of vertices, i.e., the number of steps in the plan and e is
the number of edges, i.e., the dependencies among the plan steps. The remaining
steps of the algorithm compute the set of interacting goals from the set of connected
components. The algorithm in Figure 5.2 to build the partially ordered solution
labeled the edges between the operators that achieve the user-given goal statement
and the finish operator (op,•+i), with the particular goal conjunct that each operator
achieves (see steps 5-6 of the algorithm in Figure 5.2). Steps 6-9 of the algorithm
Find-InteractingGoals use this labeling information to determine which goals are
achieved by each connected component.

The complexity of the overall algorithm is determined by the complexity of step 2
as the other steps perform constant access operations for each connected component of
the graph. The maximum number of connected components is k which is the number
of goal conjuncts in the goal statement g. The complexity of step 2 is O(max(n,e))
where e is the number of edges, and n the number of vertices of the partial graph.
The complexity of the algorithm above is therefore O(max(n, e, k)).

5.2 Identifying the relevant initial state

In addition to the goal statement a problem is specified in terms of an initial state.
This initial state also characterizes the case to be stored and should be used to index
it. Given the specification of a problem solving situation it is commonly asked what
are the important (or relevant) features of the initial state in order to achieve the goal
statement. This set of relevant features are the ones that are used as indices to the
case. There are two reasons why it is useful to reduce the set of features of the initial
state to the set of relevant features:

1. The set of relevant features represents more accurately the semantic dependen-
cies between the initial state and the goal statement (as the remaining features
are not used to achieve the goal).

2. The set of relevant features is a subset of the total set of features. Therefore
the case is indexed by a more specific set of features and the retrieval procedure

5.2. IDENTIFYING THE RELEVANT INITIAL STATE 81

compares a new problem solving situation against a smaller set of features
becoming therefore more efficient.

This section presents a method to automatically identify the relevant features of
the initial state.

5.2.1 Disambiguating the notion of "relevant"

In order to solve the issue of identifying the relevant features of the initial state, I
claim the following fact which allows the unambiguous definition of the notion of an
initial state feature being relevant to achieve the goal statement.

* The relevant initial state is not only a function of the goal statement but it is
also a function of the particular solution found to achieve that goal statement.

The following example illustrates this claim. Consider Figure 5.5 which shows
in (a) the initial state and in (b) the goal statement of an example problem from
the extended-STRIPS domain, say problem strips2-17.3 The rooms are numbered
at their corners and the doors are named according to the rooms they connect. Doors
may be open, closed, or locked. In particular, door24 connects the rooms 2 and 4
and is locked. The door connecting the rooms 3 and 4, door34, is closed and, for
example, door12 is open. The number of the boxes can be inferred by the attached
description of the initial state. Note that box1 is in roomi. The problem solver must
find a plan to reach a state where door34 is open, and boxi is in room2.

Assume that NOLIMIT solves the problem in Figure 5.5 by pushing boxi from
roomi into room2, and then going to room3 back through rooml to open the door
door34. The actual solution searched and found would be the plan shown in Fig-
ure 5.6 (al).

In this way of solving the problem, for example, key24 for the locked door24 does
not play any role in reaching a solution. This door is therefore not a relevant literal
in the initial state if this particular problem solving episode is to be replayed. Also
the other three boxes in the initial state, box2, box3, and box4, are not used to
achieve the goal. Figure 5.6 (a2) shows the set of literals in the initial state that are
relevant to each particular goal conjunct for this particular solution. The initial state
is foot-printed according to the goal conjuncts and the solution found, i.e., each literal
in the initial state is associated with the list of goals that it contributed to achieve.

However NoLIMIT could have encountered a different solution to this problem,
namely to push boxl along on its way to door door34, open it, and push boxl through

'Problems are named for the purpose of identifying them when the organization of the case
library is illustrated (see section 5.3).

82 CHAPTER 5. AUTOMATIC STORAGE OF CASES

2

3 4 3

(inroom robot roomi) (inroom box, roomi) (and (inroom boxl roo.2)
(inroom box2 room3) (inroom box3 room3) (door-open door34))
(inroom box4 room4) (inroom key24 room4)
(door-open doorl2) (door-open doorl3)
(door-closed door34) (door-locked door24)

(a) Initial State (b) Goal Statement

Figure 5.5: Problem situation in the extended-STRIps domain (strips2-17); The goal state-
ment is a partial specification of the final desired state: the location of other objects and the
status of other doors remains unspecified.

door24 into room2, after unlocking this door. The actual solution searched and found
would be the plan shown in Figure 5.6 (bl). In this way of solving the problem, for
example, key24 for the locked door24 is a relevant literal in the initial state of this
problem if this problem solving episode is to be replayed. Figure 5.6 (b2) shows the
actual foot-print of the initial state for this solution.

This example illustrates the idea that the concept of a feature being relevant to
a particular goal is not an ambiguous notion if defined N ith respect to a particular
solution.

Definition 2 Relevant features of the initial state:
Given an initial state S = S1iS2, , m,, the conjunctive goal Q = G1, G2 ,... ,Gk

and a particular plan T = OPI,oP2,... O the literal si is relevant to the problem
situation with respect to the solution T, iff si is in the foot-print of some goal
conjunct Gj, i.e., iff si contributes to achieve the goal Gj in the plan T.

The foot-printed features of the initial state are instantiated and identified from
the final solution. This is similar to the chunking process in SOAR [Laird et al., 1986].
Chunking happens at each problem solving impasse instead of just at the end of the
problem solving episode as in the foot-printing process.

The next section formally introduces the procedure to automatically generate the
foot-printed initial state from the derivational trace of the plan.

5.2. IDENTIFYING THE RELEVANT INITIAL STATE 83

(GOTO-BOX boxi) (GOTO-BOX boxi)
(PUSH-THRU-DOOR boxi dr12) (PUSH-THRU-DOOR boxi dr13)
(GO-THRU dr12 roomi) (PUSH-TO-DOOR boxi dr34)
(GOTO-DOOR drl3) (OPEN-DOOR dr34)
(GO-THRU dr13 room3) (PUSH-THRU-DOOR boxi dr34)
(GOTO-DOOR dr34) (GOTO-KEY key24)
(OPEN-DOOR dr34) (PICK-UP key24)

Cal) (GOTO-DOOR dr24)

Initial State: Goal Conjuncts: (UNOPEN-DOOR dr24)

connects drl2 rml rm2 (GOTE-OBOX boil)
(arm-empty) GTBObo1

(pushable boxl) (inroom b x1 rm2) (PUT-DOWN key24)
(inroom box1l ni) (PUSH-THRU-DOOR boxl dr24)
(dr-open, drl2) (bi)
inroom robot rm Initial State: Goal Conjuncts:
connec s dr1 rmnacnesr rm a

(connects dr34 rm3 rm4) conn.ects r2 m2r
(dr-open drl3) (dr..ope dr34) (psal bol) (nro~om b lm2
(dr-closed dr34) (rlce r4
kconnects dr: rm2 ; drlckddr
(dr-locked dr24) (inroom key24 rm4)
(inroom box2 rm3) (inroom boxl rul)
(inroom box3 rm3) iinroom robot nil)
(inroom box4 rm4) (connects drl3 rml rm3)

(inroom key24 rm4) (connects dr34 rm3 Drm4)

(r-open dr1
(inroom bo x2 rm3)

(nr o do 3r in3)

(a2) (r-closd db3)

preonitinsnecssry o chiveeac galconjnects of thegol sttmen.Te

84 CHAPTER 5. AUTOMATIC STORAGE OF CASES

recursively the algorithm creates the foot-print of a user-given goal conjunct by doing
a goal regression, i.e., projecting back its weakest preconditions into the literals in the
initial state [Waldinger, 1981, Mitchell et al., 1986]. The literals in the initial state are
categorized according to the goal conjunct they contributed to achieve. This episodic
goal regression acts as a lazy explanation of the successful path [Cain et al., 1991,
Hickman and Larkin, 1990, Pazzani, 1990] It also emphasizes a goal oriented behavior
[Kedar-Cabelli, 1985, Hammond, 1989], by focusing only on the goal-relevant portions
of the initial state according to the stored derivational trace.

Input : A totally ordered plan T = op0o, ,...,op.,op.+1, and the
goal statement G = G1,G 2,...,Gk.

Output : The foot-printed initial state.

procedure Foot..PrintInitialState(T, G):
1. for i = 1 to k do
2. op,. LastOp_.ResponsibleForPrecond (Gi, n)
3. RecursivelyFootPrint (Gi, Gi, preconds (op,), op,)

procedure LastOp..Responsible.ForPrecond (goal, i)
1. op. - nil
2. op-count +- i
3. while (not op.)
4. if (or (and (positive-goal-p goal) (goal E adds(opo-count)))

(and (negative-goal-p goal) (goal E dels(opop count))))
5. then op. 4- OPop-count

6. else op-count +- op-count -1
7. Return op,

procedure RecursivelyFootPrint (user-goal, literal, set-of-preconds, op,)
1. ifr=0
2. then Set.Foot.Print (literal, user.goal)
3. else for each precond E set.of-preconds do
4. op. --- LastOp__Responsible-ForPrecond (precond, r)
5. RecursivelyFoot_.Print (user-goal, precond, preconds (OpN), OpN)

Figure 5.7: Foot-printing the initial state

The algorithm in Figure 5.7 uses the totally ordered plan as a list of the annotated
applied operator decision nodes of the case. As presented in section 4.1.2, these nodes

5.3. ORGANIZATION OF THE CASE LIBRARY 85

have annotated slots with the corresponding lists of preconditions, additions, and
deletions to the state, which are returned respectively by the access slot functions
preconds, adds, and dels. Remember that adds(op0) returns the initial state S,
and preconds(opn+,) returns the goal statement Q.

Step 2 of the procedure Foot..PrintInitial-State finds the operator responsible,
opt, for adding each goal conjunct Gi. The procedure La-tOp.ResponsibleFor-
_Precond follows the solution from the operator begin analyzed back to the initial
operator opo, and stops when it finds an operator that adds the goal (or deletes it,
in case of a negated goal). Notice that. the procedure terminates always successfully
because the given T is a solution to the problem. Therefore each goal is added
by some previous operator in the plan. The procedure Recursively-Foot__Print
implements the goal regression and sets the foot-printed initial state literals for each
goal conjunct, user-goal, from the user-given goal statement.

The algorithm Foot _Print-Initial-State runs in polynomial time in the length of
the plan. The procedure Last _Op_-ResponsibleFor_.Precond, if implemented as
shown above, makes the overall algorithm run in 0(n 2). An alternative implementa-
tion where additional bookkeeping is done at search time, accomplishes the same pro-
cedure in constant time. Every time an operator is applied, the problem solving algo-
rithm attaches links from the literals added (deleted) by the operator to the operator.
Literals are themselves linked to goal decision nodes, and these pointers to the adding
operators are stored attached to the preconditions of the applied operator nodes. For
that implementation, the procedure LastOp_.ResponsibleFor._Precond returns
the last operator adding a precond in constant time, i.e., the access slot time added
to the time of returning the maximum index of the operators in the slot, as more than
one operator may add the same precond and the procedure returns only the last one.
The complexity of the overall algorithm is then 0(pn), where p is the total number
of preconditions.

5.3 Organization of the case library

The previous sections presented the algorithms to identify the set of appropriate
indices in terms of the goal statement and initial state. The goal statement Q is
partitioned into the sets of interacting goals, say 9i. The initial state is foot-printed
for the different goal conjuncts. Definition 3 introduces the foot-printed initial state
of a set of interacting goals.

Definition 3 Foot-printed initial state for a set of interacting goals:
The foot-printed initial state for a set of interacting goals is the union of the

foot-printed initial states for each individual goal in the set.

86 CHAPTER 5. AUTOMATIC STORAGE OF CASES

1 92 93 !94.. C Interacting

~ conjunctive goals

Foot-printed((XOXD0)
______________________________________ Initial state

Case

Figure 5.8: Interacting goals and foot-printed initial state used as the case indices

Figure 5.8 summarizes the previous sections by sketching a case multiply indexed
by the sets of interacting goals and the corresponding foot-printed initial states. The
goal statement Q is partitioned into m sets of interacting goals, !i, i = 1, ... , m. The
subgoaling links annotated at the case steps identify the set of steps of the case that
achieve a particular set of interacting goals !i. As will be presented in chapter 7, the
replay mechanism may reuse only subparts of a case indexed by a particular set of
interacting goals by following those subgoaling links, ignoring the steps of the case
that are not related to that set of goals.

After the identification of the appropriate set of indices for a case, this section
presents the data structures that support the indexing of the cases in the case library.

The data structures are presented to support the efficient access to the case library.4

4The reader may skip this section on a first pass through the thesis and return to it after getting
familiar with the overall storage and retrieval procedures.

5.3. ORGANIZATION OF THE CASE LIBRARY 87

5.3.1 Parameterizing the problem solving situation

The analogical reasoner does not perform an eager generalization of the problem
solving episode. The problem solving episode is however parameterized to facilitate
the substitution of roles among similar situations.

Definition 4 Parameterized literal:
A parameterized literal (either from the goal statement or from the foot-printed

initial state) is a literal where its arguments are converted into variables of the cor-
responding immediate class in the type hierarchy.

For example, consider Figure 5.9 which shows the type hierarchy of the extended-
STRIPS domain.

TOP-CLASS

ROOM DOOR OBJECT AGENT

BOX KEY

Figure 5.9: The class hierarchy in the extended-STRIPS domain

The name of each variable is a concatenation of the class of the variable and some
arbitrary number. At retrieval time variables are bound to objects of the same class.
Some examples of parameterized goals follow:
Examples:

(door-open drl2) -> (door-open <door54>)
(inroom key24 rm2) -> (inroom <key27> <room7>)
((inroom key24 rm2) (inroom box2 rm2)) ->

((inroom <key27> <room7>) (inroom <box63> <room7>))
(next-to robot box3) -> (next-to <agentl3> <box59>)

A literal can be further parameterized to the classes of its arguments as shown in
definition 5.

Definition 5 Class-parameterized literal:
A class-parameterized literal is a literal with its arguments replaced by their

immediate class names.

88 CHAPTER 5. AUTOMATIC STORAGE OF CASES

Examples:

(door-open drl2) -> (door-open DOOR)
((inroom key24 rm2) (inroom box2 rm2)) ->

((inroom KEY ROOM) (inroom BOX ROOM))
(next-to robot box3) -> (next-to AGENT BOX)

Note that the class parameterization loses the information of the particular rela-
tionships among the arguments of the literals. In the second example above, ((inroom
key24 rm2) (inroom box2 rm2)) is class-parameterized to ((inroom KEY ROOM)
(inroou BOX ROOM)) missing the information that it is the key and the box are
in the same room, ru2.

These two levels of parameterization are used to effectively prune the set of can-
didate analogs. In particular, at retrieval time, the comparison at the class parame-
terization level selects the set of cases that unify in terms of the arguments class (see
chapter 6).

5.3.2 The goal statement indexing structures

The several data structures that implement the goal and initial state indexing are
designed to answer efficiently different requests from the analogical reasoner. Chap-
ter 6 presents a detailed analysis of the efficiency resulting from these data structures.
This and the next sections introduce the data structures used and briefly present the
requests from the analogical reasoner that benefit from these particular data struc-
tures.

CLASS-GOAL-PARAMETERIZED-GOAL This hash table associates the

class-parameterized goals with a list of the corresponding parameterized goals.

PARAMETERIZED-GOAL-INITIAL-STATE This hash table associates the

parameterized goals with the discrimination network (see section 5.3.3) that
stores the initial state pointers to all the cases that solved a problem with those
parameterized goals.

GOAL-INTERACTIONS This vector stores, at position i, a list of the class-

parameterized goals with i many conjuncts.

CLASS-GOAL-PROBLEM This hash table associates with the individual class-

parameterized goals the list of problems that solved a corresponding instantiated
goal.

5.3. ORGANIZATION OF THE CASE LIBRARY 89

Illustrating example As an example consider the problem strips2-5 shown in Fig-
ure 4.5 with goal statement (and (door-closed door34) (next-to robot boxb))
and consider that in the case to be stored the two goals interact. Consider also prob-
lem strips2-17 shown in Figure 5.5 with goal statement (and (door-open door34)
(inroom boxi room2)) and consider again that the two goals interact, For the pur-
pose of better illustration, consider an additional problem strips3-9 with goal state-
ment (and (next-to robot box4) (inroom box4 rooml) (door-closed door12)).
Assume that the solution found to this problem breaks the goal statement into two
sets of interacting goals, namely { (door-closed doorl2), (next-to robot box4) }
and { (inroom box4 room1) }. Figure 5.10 summarizes the three problems.

Interacting goals Parameterized Class- Parameterized
((door-closed door34) ((door-closed <door57>) ((door-closed DOOR)
(next-to robot box3)) (next-to <agentl3> <box7>)) (next-to AGENT BOX)

((door-open door34) ((door-open <door39>) ((door-open DOOR)
(inroom boxi room2)) (inroom <box24> <room44>)) (inroom BOX ROOM))

((door-closed door12) (door-closed <door57>) (door-closed DOOR)
(next-to robot box4)) (next-to <agentl3> <box7>)) (next-to AGENT BOX))

((inroom box4 roomI)) ((inroom <box25> <room78>)) ((inroom BOX ROOM))

Figure 5.10: Parameterized goals in the example problems, strips2-5, strips2-17, and
strips3-9

The problems are inserted into the case library in the order strips2-5, strips2-
17 and strips3-9. The parameterization of the last problem strips3-9 uses the same
variables that are used in the first problem strips2-5 because they share a set of
interacting goals. The algorithm that assigns the variables to the goal statement
accesses the *CLASS-GOAL-PARAMETERIZED-GOAL* hash table to match with
identical previously stored problems.

Figure 5.11 (a) shows the contents of the hash table *CLASS- GOAL- PARAME-
TERIZED-GOAL* after the three problems are inserted. Note that this situation is
very simple and is considered just for illustration of the data structures.

Figure 5.11 (b) shows the contents of the hash table *PARAMETERIZED-GOAL-
INITIAL-STATE*. The parameterized goals are associated with the discrimination
networks that store the indexing foot-printed initial state. In particular note that
" state-net-I'' stores the indices for two cases, namely problem strips2-5 and
strips3-9. Note that the goal conjunct is sorted alphabetically.

Figure 5.11 (c) shows the contents of the vector *GOAL-INTERACTIONS*.
There are two two-goal interacting cases and one one-goal.

90 CHAPTER 5. AUTOMATIC STORAGE OF CASES

Class-pararmeterized Parameterized goals
((door-closed DOOR) (((door-closed <doorS7>)
(next-to AGENT BOX)) (next-to <agentl3> <box7>)))

((door-open DOOR) (((door-open <door39>)
(inroom BOX DOOR)) (inroom <box24> <room44>)))

((inroom BOX ROOM)) (((inroom <box25> <room78>)))

(a) *CLASS-GOAL-PARAMETERIZEDIGOAL*

Parameterized goals State-net-names
((door-closed <door57>) "state-net-i"
(next-to <agentl3> <box7>))

((door-open <door39>) "state-net-2"
(inroom <box24> <room44>))

((inroom <box2S> <room78>) "state-net-3"

(b) *PARAMETERIZED-GOALINITIAL-STATE*

No. of interactions List of class-parameterized goals
1 ((inroom BOX ROOM))
2 (((door-closed DOOR) (next-to AGENT BOX))

((door-open DOOR) (inroou BOX ROOM)))

(c) *GOAL-INTERACTIONS*

Class-parameterized Problems
(door-closed DOOR) (strips2-5 strips3-9)
(next-to AGENT BOX) (strips2-5 strips3-9)
(inroom BOX ROOM) (strips2-17 strips3-9)
(door-open DOOR) (strips2-17)

(d) *GOAL-PROBLEM*

Figure 5.11: Indexing data structures

Figure 5.11 (d) shows the relevant entries of the hash table *GOAL-PROBLEM*
after problems strips2-5, strips2-17, and strips3-9 are stored into memory. For exam-
ple, the hash key (inroom BOX ROOM) has value the list (strips2-17 strips3-9),
because these two problems have an instantiation of that literal in their goal state-
ment, respectively (inroom box1 room2) and (inroom box4 roomi).

5.3. ORGANIZATION OF THE CASE LIBRARY 91

The retrieval procedure benefits from these data structures The organi-
zation of memory is functionally dictated by the needs of the other modules of the
analogical reasoner. In particular the case library is accessed to retrieve similar prob-
lem solving episodes that the replay procedure should be able to use in order to reduce
its search space. Therefore in the next chapters 6 and 7 it becomes clear why the
particular data structures are chosen.' In a nutshell the retrieval procedure accesses
the vector *GOAL-INTERACTIONS* to find the potential goals that can guide a
subset of the new goals. From the list of goals returned by this hash table the retrieval
procedure accesses the *CLASS-GOAL-PARAMETERIZED-GOAL* for the possible
set of goals that match their arguments at the class level. This hash table returns
the parameterized goals that the retriever matches against the new goals. It then
proceeds to match the initial state in the adequate state network returned by access-
ing the hash table *PARAMETERIZED-GOAL-INITIAL-STATE*. The underlying
justification for the design of these data structures is the goal to achieve, in close to
constant time by hashing, an effective reduction of the number of candidate analogs
from the large case library.

5.3.3 The initial state discrimination network

There are many problem solving situations for which the parameterized goal state-
ments are identical and the initial states are different. These different initial states
are organized into a discrimination network to index efficiently these cases that share
completely the goal statement, but differ in the relevant initial state. Though in
fact the structure is a network as nodes have several incident nodes, consider for
convenience that the network is a tree where nodes are repeated for common paths.

Each network has a root frame of class "state-root" as shown in F;,,ure 5.12 that
summarizes the contents of the network. The nodes of the network are frames of class
"state" also shown in Figure 5.12. Their content is a set of literals in the foot-printed
initial state of the cases indexed by the network.

The following properties and definitions describe the semantics of the discrimina-
tion tree:

Property 1: A node n of the tree points directly to a case c, iff c E cases(n) and
Vk E children(n) : -(c E cases(k)). Let n be the pointer-node for case c. So
the case c is in the list of cases of the node n but not in any of the lists of cases
of the node children of n.

'A description of an initial version of the memory data structures can be found in [Veloso and
Carbonell, 1992b].

92 CHAPTER 5. AUTOMATIC STORAGE OF CASES

(def-frame state-root (:is-a tofu)
:prob-names nil ;list of the problem names stored

;in the state discrimination net
:goal nil ;conjunctive goal for all the cases in the net
:relevance-bias nil ;ordering of relevance of the literals
:cases nil ;list of all the cases in not
:children nil ;points to only one state frame.
)

(def-frame state (:is-a tofu)
:content nil ;list of literals of the foot-printed

;initial state
:parent nil ;parent node, state-root frame or state frame
:children nil ;list of the children state frames
:cases nil ;list of cases in the node's subtrees
)

Figure 5.12: The frame structure of the nodes of the discrimination net for the initial
state

Property 2: The foot-printed initial state for a case c is the union of the contents
of the tree nodes in the path from the pointer-node of c to the root of the tree.

Property 3: The organization of the tree is such that the content of a node is more
relevant than the contents of its children nodes. Sibling nodes are equally
relevant.

Properties I and 2 define the structure of the nodes as the foot-printed initial
states that index the cases. The foot-printed initial state was identified as the subset
of the features of the complete initial state that are relevant to a particular problem
solving episode. However even these already relevant features can be ranked in a
scale of relevance. The parent-child relationship between nodes in the initial state
discrimination tree capture this ranking which is used by the similarity metric as it
will be presented in chapter 6. Therefore property 3 establishes that the structure

of the network is such that the literais closer to the root are more relevant than the
ones at the leaves. The case library is dynamical.y organized to reflect this degree
of relevance of the literals in the initial state. This reorganizaLion is based on the
feedback that the analogical replay mechanism provides to the case library on the
utility of the suggested guidance. The degree of relevance of the literals for each

5.4. THE COMPLETE STORAGE ALGORITHM 93

particular state network is stored in the slot relevance-bias of the root of the tree
(see Figure 5.12).
Example:

(make-frame 'state-net-i state-root
:prob-names '(strips2-5 strips3-9)
:goal '((door-closed <door57>) (next-to <agentl3> <box7>))
:relevance-bias ' ((connects . 1) (pushable . 1)

(arm-empty . 2) (door-open 2) (door-closed 2)
(door-locked . 2) (inroom . 2))

:cases '(case-strips2-5-O case-strips3-9-0)
:children '(state-il state-12)
)

Illustrative example Figure 5.13 sketches the network structure of state-net-1
which indexes the two solutions for the problems strips2-5 and strips3-9 (see Fig-
ures 5.10 and 5.11).

(arm-empty)
(connects dri3 rml rm3)
(connects dr34 rm3 rm4)

(pushable box1)
(dr-open dr13)

(dr-closed dr34)

(dr-open drT2) (dr-locked dr24)
I (in~room key24 rm4)

Figure 5.13: A simple discrimination tree for the initial state

The figure only shows the contents of the nodes and the parent-child relationships.

5.4 The complete storage algorithm

The previous sections introduced the several phases of the storage procedure. Fig-
ure 5.14 shows the complete storage procedure.

* Step I produces the partially ordered plan by using the procedure Build-
.PartialOrder which builds the partial order analyzing the dependency struc-
tures of the totally ordered plan produced by NoLIMIT.

94 CHAPTER 5. AUTOMATIC STORAGE OF CASES

Input : A problem specified by the goal statement 9, the initial
state S, and the corresponding derivational trace and plan 7'.

Output : The updated case library.

procedure StoreCase(g, S, 7'):
1. partiaLorder +-- Build-PartialOrder (T, s)
2. sets.interacting.goals +- FindInteractingGoals (partiaLorder, Q)
3. foot-printed-initiaLstate +- Foot.Print-InitialState (T,
4. for each set-interacting-goals E sets-interacting.goals
5. foot-print-set +- Union.FootPrints

(foot-printed-initiaLstate, set.interacting-goals)
6. sorted.par-goal +-- Sort-andParameterizeGoal (seLinteracting-goals)
7. state-net +- GetHash.orNew (sorted-par-goal)
8. InsertNewCase (Root-of (state-net), foot-print-set, sorted-par.goal)
9. UpdateIndexing.Tables
10. UpdateCaseHeader

Figure 5.14: The complete storage algorithm

e Step 2 finds the sets of interacting goals using the procedure FindInter-
acting-Goals which determines the connected components of the partial order
and identifies these with the corresponding interacting goals.

9 Step 3 computes the foot-printed initial state by using the procedure Foot-
-Print_.InitialState which identifies the relevant features of the initial by goal
regressing in the derivational trace of the solution.

e Steps 4-8 handle each one of the set of interacting goals and proceed to the
multiple indexing of each case. Step 5 determines the foot-printed initial state
for each set of interacting goals. Step 6 parameterizes and sorts alphabetically
the conjunctive goal.

e Steps 7-8 insert the new foot-printed initial state into the corresponding dis-
crimination network returned by the procedure GetHash-or..New at step 7.
The procedure InsertNewCase is described below in detail.

* Finally steps 9-10 update the indexing data structures. The case header records
the resulting parameterization from the complete insertion process of the case.

Figure 5.15 sketches the overall organization of the case library. The goals are
used in a first level of indexing followed by the discrimination network of the initial

5.4. THE COMPLETE STORAGE ALGORITHM 95

state. The cases are pointed by the leaves of this indexing structure.

came-345
(at-truck dtrp..cpom) , 1. ,,).

~t-bj ~obj~. .1.p.-) cs.•.
(at-aip obj. . i -..............
(c-apaciay -cty=P "104n-22

cao-23

GOALS

DISCRIMINATION NETWOKS

Figure 5.15: A sketch of the organization of the case library

When a new case is inserted into the discrimination network, the underlying con-
cern is to follow the relevance-bias making sure that the properties of the discrimina-
tion network remain invariant. Figure 5.16 shows formally the procedure to insert a
new case into the discrimination network.

The procedure recursively gets as an input the contents of a node in the discrimi-
nation state net, state.netnode, the new foot-printed initial state, newlmtate.goal, and
the parameterized goals, sort ed.par.goal. The newstate.goal and the state...netnode

may have]iterals in common. Steps 2-4 of the procedure identify the intersection
and differences between these two sets of literals. Step 5 checks if the literals in the
intersection are of higher relevance than the literals in both complementing subsets.
The procedure Highest. Relevant uses the relevance-bias stored at the root of
the network to compute the relative relevance of the literals. Steps 6-9 maintain the
structure of the tree to guarantee that the contents of each parent node are of equal
or higher relevance than the literals in its children nodes.

96 CHAPTER 5. AUTOMATIC STORAGE OF CASES

Input : A state net node, the new foot-printed initial state, and
the sorted parameterized interacting goals.

Output : The updated discrimination state network.

procedure InsertNewCase (state.net-node, new-state.goal, sorted-par.goal)
1. when new.state.goal do

;;Compare the contents of state.net.node against the new.state-goal
2. old-left +- state.net-node \ new.state.goal
3. intersect - state.net-node n new.state.goal
4. new-left -- new.state.goal \ state.net-node
5. if Highest-Relevant (intersect)
6. then Set -StateNodeContents (state.net.node, intersect)
7. if old-left
8. then Create-New-StateNode (new-left)
9. else

matching-child -- Find_-MatchingChild (state.net-node, new-left,
sorted.par.goal)

8. InsertNewCase (matching.child, new-left, sorted.par-goal)
9. else CreateNew-StateNode (new-left)

Figure 5.16: Algorithm to insert a new case into memory

Figure 5.17 illustrates the three different situations described that can occur at
insertion time. In (a) a particular node OLD is sketched with its children subtrees
A and B. Part (b) of the figure shows the new situation NEW intersecting the node
OLD (after matching and unification). Part (c) shows the different resulting new
configurations of the discrimination tree. Part (c) 1. and 2. illustrate the situation
in which the literals in the intersection of OLD and NEW are more relevant than either
the literals in old-left or new-left. The situation (c) 2. shows the more common
frequent situation in which old-left is empty and therefore the literals in new-left
are recursively inserted into the subtrees A and B. Finally part (c) 3. shows the
resulting tree in any other situation where the intersection between the OLD and the
NEW literals of the initial state is not more relevant than any of other left subsets. For
this situation both the NEW and OLD nodes become sibling of each other.

5.4. THE COMPLETE STORAGE ALGORITHM 97

OLD NEW

OLD

A old-left intersect new-left

(a) (b)

1. intersect HIGHEST-RELEVANT 2. intersect HIGHEST-RELEVANT

old-left EMPTY

tersect

A B

COMPARE new-left with A and B

3. ANY OTHER SITUATION

(c)

Figure 5.17: Inserting a new case into the state net

98 CHAPTER 5. AUTOMATIC STORAGE OF CASES

5.5 Summary

This chapter presented the indexing of the cases, the data structures supporting the
organization of the case library, and the complete storage algorithm.

The interacting goals are identified by partially ordering the totally ordered solu-
tion found. The connected components of the partially ordered plan determine the
independent fragments of the case each corresponding to a set of interacting goals.
Each case is multiply indexed by the sets of interacting goals.

The relevant literals of the initial state are foot-printed for each goal conjunct
in the goal statement by goal regressing through the plan found. Several learn-
ing methods share the explanation provide by the subgoaling chain supplied by the
underlying domain theory. In that sense, foot-printing is similar to explanation-
based indexing techniques (Barletta and Mark, 1988, Hickman and Larkin, 1990,
Pazzani, 19901 and chunking [Laird et al., 19861. A distinction between the methods
is the level of generalization, abstraction, or scope of the explanation obtained. Foot-
printing explains the episodic final solution while chunking explains each problem
solving impasse. Explanation-based indexing, as used in [Barletta and Mark, 1988],
uses goal regression to abstract domain features from the instantiated observables
defining a solution episode. Foot-printing uses goal regression to reduce the set of
instantiated features of the initial state.

Chapter 6

Automatic Retrieval of Cases

How to retrieve past experience efficiently?

The previous chapter described how a case is multiply indexed by the set of
interacting goals and by the relevant features of the initial state. It also presented the
data structures that support the indexing of the case library. There is an important
question to address next: How can past experience be retrieved efficiently from the
case library?

This chapter describes the retrieval procedure. It follows the path of a new given
problem through the case library until a set of similar past cases is identified. The
chapter is organized in five sections. The first section states the general retrieval
problem and motivates the need for an efficient algorithm specially in large case
libraries. Section 2 introduces different similarity metrics with increasing degrees of
problem-context sensitivity. The third section presents the designed and implemented
retrieval algorithm, discusses its implementation, and illustrates the procedure with
an example from the logistics transportation domain. Section 4 discusses how the
cost of retrieving the similar cases can be offset by the expected search effort savings.
Finally, section 5 summarizes the chapter.

6.1 The ground for the retrieval procedure

Consider that a new problem is proposed to the problem solver. As usual the problem
is specified in terms of its goal statement and initial state. Instead of simply trying
to solve the new problem from its domain theory (if one is available), the analogical
problem solver tries to find if it has solved any similar problems before. Two aspects
motivate the problem solving attitude of looking first at similar past experience rather

99

100 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

than proceeding to search for a solution to the problem straight from the domain
theory.

1. Solving a problem from a domain theory involves searching through the problem
state space. The search is exponential on the length of the solution. For large
and complex problems this search may be unacceptable. Therefore the problem
solver looks for previous problem solving experience that it can use in addition
to (or instead of) its domain theory to generate a solution to the new problem.

2. The analogical problem solver explores the transfer of problem solving experi-
ence among similar situations. It tries to learn not only from the exact same
past problem solving experience but from similar situations.

The purpose of the retrieval phase is exactly to identify the similar problem solv-
ing situations that will be helpful to the replay mechanism guiding its reconstruction
process and reducing the problem solving search effort involved. Several issues are
raised therefore in designing the retrieval procedure:

"* What are similar problem solving situations?

- What features should be compared?

- How to rank the partially matched situations that differ and coincide in
different features sets?

"* What is a reasonable amount of effort to invest in searching for similar situa-
tions?

- Can it be guaranteed that the retrieved analogs are the best matched prob-
lems in the case library?

- Can anything be predicted in terms of the amount of problem solving
savings expected from a particular similar case?

The first set of questions on the suitability of various similarity metrics underlies
a major part of the research in analogy and case-based reasoning. In this thesis I face
these same questions. I try to answer them in a more relaxed manner, i.e., from a
machine learning and integrated perspective. The concept of similar is combined with
the problem solving experience, anA the problem solver integrates the reconstruction
process with search from the available domain theory.

The second set of questions, as raised in this thesis, is driven by the scaling up
of the case library and the integration with the base problem solver. When the case

6.1. THE GROUND FOR THE RETRIEVAL PROCEDURE 101

library increases considerably in size and in the complexity of the stored cases, the
matching time, even for role substitution, at the indexing level may become very
expensive. When the number of cases in the case library is small, it is feasible to
guarantee a best match. In fact, a problem solver that is not integrated with any
kind of other domain knowledge has to make sure that the similar past problem to
be adapted does not differ considerably from the new situation so the knowledge-
weak adaptation phase may succeed. In this thesis the integration with the base level
problem solver allows the system to relax on retrieving a guaranteed best match, and
requires instead a reasonable match that overcomes the weaknesses of the specifica-
tions of the domain theory.

Overall, both sets of questions proved very challenging to answer. The approach
developed in this work to efficiently retrieve similar cases is successfully validated
through empirical results as shown in chapter 8. Later this chapter also presents a
simple analysis of the trade-off between the retrieval and the problem solving search
costs (as previously also discussed in [Veloso and Carbonell, 19891).

This section proceeds to motivate concretely the issues raised above and the ap-
proaches designed to answer these questions. The following sections of the chapter
define formally the concepts and algorithms designed.

6.1.1 What are similar problem solving situations?

Consider a new problem solving situation with goal statement g = G1, G2 ,... G
and initial state S also given as a conjunction of literals. When retrieving past cases
the system compares the features from these two distinct sets, goal and initial state
features. As the analogical reasoner expects to learn from situations that partially
match the new situation, it considers as reasonable candidate analogs past cases that
share only subsets of the features of the goal statement and/or of the initial state.

Immediately the problem arises of how to rank the partially matched situations:
What is it "better"? To share more features all together independently from whether
they are in the goal or initial state feature sets? To share more goal features? To share
more features from the initial state? The common sense intuitive answer is to consider
as a better match the situation that shares "more relevant" features. Many attempts
have bten made in trying to capture this idea from which most of them are successful
in special purpose systems, where the concept of relevance is elaborately defined
[Ashley and Rissland, 1987, Hinrichs and Kolodner, 1991, Rissland and Skalak, 1991].
In this thesis I explored a solution to the similarity metric problem that relaxes the
guarantee that the "more relevant" or "best" match is returned. The method however
guarantees that the match is reasonable in the sense that it is expected to help reduce
problem solving search time when the replay mechanism constructs a new solution

102 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

guided by the retrieved similar cases. The solution devised to address the definition
of an appropriate similarity metric complies with the two next ideas:

e As there is no knowledge about what is the solution to the new problem and
what features from the new problem are relevant to solve the problem, the option
is to guarantee that only the relevant features of the past cases are compared
with the new situation - this is the reason why the initial state is foot-printed
after a solution is found (see section 5.2).

9 As the problem solver is a backward chainer which reasons from the goal state-
ment to find the sequence of operators to apply to the initial state to achieve the
goal, the similarity degree at the goal level is more weighed than the similarity
degree at the initial state level.

The similarity metric used is built upon these guidelines. The foot-printed literals
in the initial state of the past cases are unified with the initial state of the new
problem. These literals are further organized in a discrimination network capturing
different levels of relevance as it was presented in section 5.3.3. The levels of relevance
are learned incrementally through the feedback that the replay mechanism returns
on the utility of the guidance provided.

6.1.2 How can retrieval be efficient in a large case library?

Previous researchers have identified in a variety of situations where there is an
eventual decrease of performance when the amount of learned knowledge increases
[Minton, 19881. In the context of this work, this utility problem could be stated as:

* Does the performance of the overall analogical reasoner degrade with an increase
in the number of cases in the case library?

In particular in terms of the retrieval procedure the problem slims down to the
question of whether retrieval can be efficient even for large case libraries. The main
characteristic of my approach in addressing this issue is that I designed the retrieval
algorithm so that it would not have to face this utility problem. In particular the
retrieval algorithm stems from the following decisions:

* Reduce the number of candidates for detailed unification comparison by using
several levels of indexing filtering.

6.1. THE GROUND FOR THE RETRIEVAL PROCEDURE 103

e Even if the case indices are suitable, for complex problems full matching or
unification may be unworkable. Therefore thresholds are set for the match
expectation, for the allowed time of retrieval, and for the degree of guiding
coverage expected.

The overall technique to avoid the utility problem hence relies on efficient data
structures (hash tables) for the indices that prune (filter) the set of candidate analogs
as early as possible, and on setting thresholds for the amount of effort allowed in the
overall retrieval procedure. This approach is possible because of the powerful integra-
tion of the analogical component into the base-level problem solver. The integration
allows the system to reason from partially matched situations. The partial match
may result from several eventualities:

* The new situation differs from any past case.

* The indexing is not appropriately set and the retriever finds only a partially
similar past case.

e The retriever invests only enough effort to access or unify parts of the past
cases.

Whichever of these situations occurs, the analogical replayer is prepared to receive
from the retriever only a partially matched past situation and still go ahead and solve
the new problem more efficiently by using the guiding similar past cases in addition
to its domain theory rather than simply the domain theory.

The idea of setting thresholds may seem simple. It becomes however interesting
when the problem solver is a learning system in addition to being a static problem
solver. The challenge is to let the overall system accumulate experience and learn bet-
ter correlations among the acquired knowledge.1 The learning component enables the
system to head towards improving the quality of the retrieved analogs with bounded
retrieving capabilities.

In summary, this thesis. initiates this novel line of reasoning by which the analogical
problem solver restates the retrieval question from: What are the best similar past
cases that are available? to the question: What are the reasonably similar past
cases that can be retrieved within limited bounded resources, such as allowed time
for retrieval and partial match degree. The thesis pioneers this approach within the
problem solving and machine learning framework.

'In the thesis I did not explore other issues on memory organization, like forgetting acquired
experience. The algorithm keeps however a rudimentary counter on the frequency of reuse of a case
and also a measure of the complexity of the search space explored in the problem solving episode
corresponding to a case. Further research can draw upon these stored indices to define principles to
drive the forgetting of unused experience.

104 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

6.2 Defining a similarity metric

Let P be a new problem proposed to the problem solver with goal statement gP, and
initial state S.r, both given as conjunctions of literals. A literal is an instantiated
predicate, i.e., literal = (predicate argument-value*). As an example, (at-truck
tr13 po57) is a literal where at-truck is the predicate and tr13 and po57 are its
instantiated arguments.

The retrieval procedure wants to identify a set of past cases that jointly cover
the goal statement.

Definition 6 Coverage and unificationa:
Let 9P = G ,G,...,G be the conjunctive goal statement of problem P with

conjuncts Gp, G',..., G'. A past case C with goal statement = =Cc Gc, ,...,Gc
covers a goal Gf, or Gf is covered by the case C, iff there is some G' such that
Gf and Gq unify.

Furthermore a literal I unifies a literal 1', if
"* The predicate of ! is the same as the predicate of 1'.
"* Each argument of I is of the same class (type) as its corresponding argu-
ment of !'.

In this case, there is a substitution r = {argi/arg•,...,arg,/arg'}, such that k =

o'(l').

As an example of the unification of literals, the literal (in-room key12 roomi)
unifies with the literal (in-room key13 room4), where key12 and keyl3 are both
of class KEY and roomi and room4 are both of class ROOM, under the substitution
o = {(key12 . key13),(rooml . room4)}.

Selecting a set of past cases that cover the new problem involves the establishment
of a similarity metric by which the algorithm can decide whether it is better to cover
the problem with one set of cases or another. There are several options of possible
similarity metrics and I enumerate below three different ones with increasing degrees
of problem-context sensitivity. First definition 7 introduces the match value of two
conjunctions of literals under some substitution as the number of literals that unify
under that substitution.

Definition 7 Match value of two conjunctions of literals:
A conjunction of literals L = 11,... , l,, unifies a conjunction of literals L' =

1],.. .," under a substitution o with match value 6", if there are 6 many literals
in the intersection of L and o(L').

6.2. DEFINING A SIMILARITY METRIC 105

6.2.1 A direct similarity metric

The simplest comparison between a new problem and a past case is to just equate
the features of the goal statement and initial state flatly by counting the number
of shared features. Definition 8 establishes this direct similarity metric between two
problems.

Definition 8 Direct similarity metric:
Let P and P' be two particular problems, respectively with initial states SP and

SP', and goals 9P and gP'. Let b5 be the match value of gP and gP' and 6b be the
match value ofSP and SP', under some substitution a.

The two problems P and P' directly match with match value 6" = 60 + 6,
for substitution a.

In this metric all the features of both the goal statement and the initial state
are credited for the similarity of the problems. The immediate advantage of this
metric is its conceptual simplicity. It does not require any particular understanding or
encoding of what is more relevant. All the knowledge available is uniformly weighed.
The empirical experiments showed that t's.1i nilarity metric is adequate for simple
and well-defined problems where the initial state is reduced to a small set of useful
features.

The partial match vwlue of two problems is substitution dependent. As an exam-
ple, consider the goal 9 ={(inroom keylt. rooml), (inroom boxl rooml)}, and
the goal Q' ={(inroom key13 room4), (inroom key14 room2), (inroom box53
room4) }. Then Q directly matches Q' with match value 6S = 2 under the substitu-
tion a ={ (keyl2 . key13), (roomi room4), (boxl box53) },and match
value ,•5' = I under the substitution a' ={ (key12 . key14), (roomi room2) }.

This direct similarity metric does not consider any relevant correlations between the
initial states and the goal statements.

6.2.2 Global foot-printing similarity metric

The problem of matching conjunctive goals turns out to be rather complex. As
conjunctive goals may interact, it is not at all clear that problems are more similar
based simply on the number of literals that match the initial state and the goal
statements. Noticing that matching conjunctive goals involves reasoning over a large
lattice of situations, I developed a new similarity metric by refining the indexing based
on the derivational trace of a past solution.

106 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

When the complexity of the specification of the initial state increases it becomes
impossible and inadequate to consider evenly all the features. As a past case corre-
sponds to problem solving experience, it is possible to identify the relevant features
of the initial state of the past case. Section 5.2 extensively showed a method to
automatically identify these relevant features from the derivational trace of the case.
According to that algorithm the initial state is foot-printed into the sets of literals that
contribute to achieve the different goal conjuncts of the goal statement. Definition 9
is built upon the previous direct similarity metric but increases the problem-context
sensitivity as it takes into account the reduced foot-printed as opposed to the complete
initial state.

When assigning a match value to two problems, the global foot-printing similarity
metric considers not only the number of goals that match, but also uses the matched
goals themselves to determine the match degree of the initial state.

Definition 9 Global foot-printing similarity metric:

Let P be a new problem and P' be a previously solved problem, respectively with
initial states SP and Sp', and goals 9P and 9p'. Let 6 be the match value of GP and
9p', under substitution a, and let G1,... , Gn be the matched goals.

Let SP, be the foot-printed initial state of problem P' for the set of matched goals
Gj,..., G,. Let 6b be the match value of SP and S,', under substitution a.

The two problems P and P' globally foot-print match with match value 86 =

6' + 6" for substitution a.

The purpose of retrieving a similar past case is to provide a problem solving
episode to be replayed for the construction of the solution to a new problem. The
similarity metric captures the role of the initial state in terms of the different goal
conjuncts for a particular solution found. Situation details are not similar per se.
They are similar as a function of their relevance in the solution encountered. When
the foot-printed literals are taken into account for the measure of the similarity among
problems, the retrieved analogs may provide reasonable guidance at replay time, as
the foot-printed initial state is in the subgoaling chain of the goal statement in the
particular solution to be replayed. If the new situation shares some of these features,
the problem solver should encounter the same or parts of the past search space. The
case may not be fully-sufficient due to the partial match, but, because of the shared
foot-printed literals of the initial state, the case does not work against the goal, except
for unexpected or uncovered goal interactions.

6.3. THE RETRIEVAL PROCEDURE 107

6.2.3 Interacting foot-printing similarity metric

There is an issue to resolve about using parts of a case for partially matched goal
situations. If the shared goals are not from the same set of interacting goals of the
candidate guiding case, then the question is why to use this guiding case instead of
using a set of individual cases to cover each of the goals. The metric below extends
the previous one in requiring exactly that if a case covers multiple goals then these
are interacting goals. Otherwise the metric prefers the cases that cover the goals
individually.

Definition 10 Interacting foot-printed similarity metric:
Let P be a new problem and P' be a previously solved problem, respectively with

initial states SP and SP', and goals 9' and 9p'. Let 6' be the match value of 9P
and 9P', under substitution a, such that the matched goals Gl,...,G,• cover
completely one or more sets of interacting goals.

Let P' be the foot-printed initial state of problem P' for the set of matched goals
G1, . . . , G,,,. Let 68 be the match value of SP and SP , under substitution o.

The two problems P and P' interactively foot-print match with match value
6" = 6b + 6b for substitution a.

Chapter 8 shows empirical results comparing the direct and the global foot-
printing similarity metrics. The tests were run in the extended-STRIPS and the
machine-shop scheduling domains. The results obtained show that the analogical
problem solver performs better when the global foot-printing similarity metric is used
than when the direct one is used. The extenaive tests in the logistics transportation
domain use the interacting foot-printing similarity metric. This metric was found to
be the most adequate to handle the large and complex problems in that domain. The
term "foot-printing similarity metric" with no qualification refers from now on to the
interacting foot-printing similarity metric.

6.3 The retrieval procedure

Consider that each past case C stored in the case library is indexed by the correspond-
ing foot-printed initial state and goal statement, respectively Sc and !c9. When a
new problem P is given to the system in terms of its goal statement QP and initial
state SP, retrieving one (or more) analog consists in finding a similar past case by
comparing these two inputs 9P and SP to the indices of the past case, 9c and Sc.

Figure 6.1 shows the retrieval procedure. The underlying retrieval strategy as
shown in the procedure is to get guidance for possible interacting goals. The algorithm

108 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

focuses on retrieving past cases where the problem solver experienced equivalent goal
interactions, as these are expectedly responsible for a large part of the problem solving
search effort.

Input : A new problem with goal statement G = G 1,G 2,.. . ,G and
initial state S.

Output : A set of similar cases.

procedure RetrieveSimilarCases (Q, S):
1. covering.cases 4-

2. no.goals -- k
3. uncovered-goals 4-

4. while uncovered-goals
5. past-case -- nil
6. past-case - Find.Another.Similar (no-goals, uncovered-goals, past-case)
7. if past-case

then
8. (matched-goals, goaLsubstitution) +- Match-Goals (past-case, !)
9. (similarity-value, totaLsubstitution)

+- MatchdInitialStates (past-case,matched.goals, goal-substitution, S)
10. if Satisfied-with_-Match (similarity-value)

then
11. uncovered-goals = uncovered-goals \ matched-goals
12. update covering-cases
13. if number of uncovered-goals <- no-goals
14. then goto step 6
15. if no-goals = 1
16. then Return (from while loop)
17. else no-goals +- Decrease.InteractingScope (no-goals, uncovered-goals)
18. Return covering-cases

Figure 6.1: Retrieving similar past cases

Initially the number of goals that the algorithm tries to cover simultaneously,
no-goals is set to the total number k of goal conjuncts at step 2 and all the conjunctive
goals are set uncovered at step 3. A goal remains uncovered throughout the procedure
until a case is found that covers it (see definition 6). Step 6 incrementally searches
in the case library for the interacting k-goal problems that unify with the uncovered
goals. Suppose that a problem is found. Then steps 8 and 9 proceed to evaluate

6.3. THE RETRIEVAL PROCEDURE 109

the similarity value between the two problems. The goals are considered covered at
step 11 if the procedure is satisfied with the match value according to step 10. Step 12
adds the past-case to the list of covering.cases. Step 16 terminates the procedure when
the procedure already searched for one-goal covering cases, i.e., no-goals = 1. Step 17
decreases the scope of interaction searched, when no more interactions of size no-goals
are found, and the procedure continues its search. At the end, the goals are covered
either jointly by the same case, or by a set of separate cases.

To illustrate a general run of the procedure, suppose that there are three goals in
the new problem, g = G1, G2 , G3 . The procedure goes through the following steps:

"* It tries to find interacting three-goal problems with goals that unify with the
three goals G1, G2, G 3 (step 6).

"* Suppose that it does not find any. Step 17 decreases the scope of the interaction,
say it decreases from 3 to 2.

"* Then the procedure tries to find two-goal interacting problems that unify with
some combination of the goals, i.e., (GI, G2), (GI, G 3), or (G 2, G3).

" Suppose step 6 finds a past case that unifies with (G1 , G 2). Steps 8 and 9
calculate the similarity value between the foot-printed initial state of the past
case and the new initial state. Suppose that the match is not considered satis-
ficing at step 10. This means that the two goals G1 and G 2 are not considered
covered. Step 13 sends the algorithm back to step 6.

" Step 6 incrementally finds the next similar case based on the case just found.
Suppose that step 6 finds now a case that unifies with the two goals (G 2, G 3).
Suppose also that steps 8, 9, and 10 find the match satisfying. This means
that the goals G 2 and G3 are considered covered.

"*tialy G1 is left uncovered at step 11. Step 13 fails and the procedure is not sent
back to step 6. There is only one goal left to be covered and the algorithm is
currently set on finding two-goal interacting problems (no-goals = 2).

"* Step 17 decreases the scope of interaction now to one (as there is only one goal
left to cover). The while loop at step 4 proceeds trying to cover goal G1.

"* The process continues until a case is found that covers G1 or no more alternative
analogs are available.

"* The covering-cases returned may cover all or part of the complete goal state-
ment.

110 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

6.3.1 Making the implementation efficient

The retrieval procedure is composed of several phases corresponding to the different
procedure calls as shown in Figure 6.1. The complexity of each of the particular
procedures, namely FindAnotherSimilar at step 6, Match-Goals at step 8, and
MatchInitial-States at step 9, is determined by their particular implementation.

The underlying general principle developed in this thesis for the implementation
of the matching problem is to hash on static indices. By using the hash tables pre-
sented in the previous chapter, the algorithm accesses the static attribute information
in constant time to compute the role substitutions at different levels of the class hier-
archy. FindAnotherSimilar and Match-Goals match therefore only an already
reduced number of the cases for a particular degree of goal interaction. Both matching
algorithms, Match-Goals and MatchInitialStates are incremental and generate
one new match as a function of the last match generated.

The empirical results shown in chapter 8 show that the cost of retrieval increases
close to linearly with the complexity of the problem, when a threshold for the match
value is used.

In summary the implementation conforms the following characteristics:

"* Indexing hash tables reduce the set of candidate analogs in constant time.

"* The matching algorithm is incremental to allow stopping retrieval if some "rea-
sonable" partial match is found.

"* No effort to retrieve the best set of candidate analogs in the case library.

6.3.2 Illustrative example

I now apply the algorithm step by step continuing the example presented in the
overview chapter in section 2.3.2

Figure 6.2 shows formally the contents of the several data structures for the indices
to the case library, after the five problems exl, ex2, ex3, ex4, and multi have been
solved and stored, as sketched in Figure 6.3. Variables are in angle brackets. The
name of the variables identifies the class they belong to, namely p for PACKAGE (or
OBJECT), ap for AIRPORT, t for TRUCK, po for POST-OFFICE, and a for AIRPLANE
(see appendix A).

Consider that a new problem, mult2 is proposed to the system. Figure 6.4 shows
this new problem solving situation with the class distribution of the instances, the

2'The reader does not need to review the example of the overview chapter, as Figure 6.3 reproduces
here the contents of the case library as at the end of the overview examples.

6.3. THE RETRIEVAL PROCEDURE 111

Class-parameterized Parameterized goals
((inside-truck OBJECT TRUCK)) ((inside-truck <p35> <t42>))
((inside-airplane OBJECT AIRPLANE)) ((inside-airplane <p25> <a70>))
((at-obj OBJECT AIRPORT)) ((at-obj <p69> <apl7>))
((inside-airplane OBJECT AIRPLANE) ((inside-airplane <p58> <a25>)
(inside-truck OBJECT TRUCK)) (inside-truck <p41> <t6>))

(a) *CLASSGOAL-PARAMETERIZEDEGOAL*

Parameterized goals State-net-names
((inside-truck <p36> <t42>)) state-net-i
((inside-airplane <p25> <a70>)) state-net-2
((at-obj <p69> <apl7>)) state-net-3
((inside-airplane <p58> <a25>) state-net-4
(inside-truck <p41> <t6>))

(b) *PARAMETERIZED-GOAL-INITIAL-STATE*

No. of
Interactions List of class parameterized goals

I (((inside-truck OBJECT TRUCK))
((inside-airplane OBJECT AIRPLANE))
((at-obj OBJECT AIRPORT)))

2 (((inside-airplane OBJECT AIRPLANE) (inside-truck OBJECT TRUCK)))

(c) *GOAL-INTERACTIONS*

Class-parameterized Problems
(inside-truck OBJECT TRUCK) (exl ex3 ex4 multl)
(inside-airplane OBJECT AIRPLANE) (ex2 multl)
(at-obj OBJECT AIRPORT) (ex3 ex4)

(d) *GOAL-PROBLEM*

Figure 6.2: Indexing data structures for the example of chapter 2

initial state, and the goal statement with three goal conjuncts, namely (inside-air-
plane ob5 p18), (inside-truck obl3 trl), and (at-truck tr4 p20)).

112 CHAPTER 6. A UTOMA TIC RETRIEVAL OF CASES

Lt.Ob, <p35> <p5 1t53>) atiraec2>aS)

I statat-buck:442>taae47>)
aat-airplane <a24> <apS>)I

(inideaiplae p25 c7O> jcase-ex2-4)

state-net-1: a-rc 5><o >

state-7)
Qftide-Vinsde-ruc <P35> t tbuk44>>)5>

I state-n~i ett:ate-trc .t>cp)
'isie-irlne<~ <2 I)same-City .cp5Ol> ap21_5>) sae5

a-b<p5 pl5)at-airplane <a26> capgl>)

case-multi-i J0I

F~isi-Figuren <25 6.3 Cntntsofth case librar

Attestarte of the proceure, 4o. 7>L <ps se4o3>s)hr r tregacnucsi
the oal tateent no..gascaptures thelevl of goal ineatintatteprcdr

isl -ookin for).> <All th ol r noee n ogcasese isemty

The procedure Find~~nother-mlracsestevco)OJJNEA.

6.3. THE RETRIEVAL PROCEDURE 113

(has-inatences OBJECT oh6 ob13) (state (and (goal (and
(has-instances TIUMC tri tr4) (at-obJ obS a20) (insido-airplane obh pIS)
(has-instances AIRPLANE p18) (inside-truck ob13 tr4) (inside-truck ob13 trl)
(has-instances AIRPORT a6 all a20) (at-truck tr4 a20) (at-truck tr4 p20)))
(has-instances POST-OFFICE p5 p1l p20) (at-truck trl aS)
(has-instances CITY c6 cll c20) (at-airplane p18 a20)

(same-city aS p6)
(same-city all p11)

(a) (sane-city &20 p20))) (c)
(b)

Figure 6.4: A new example - mult2: (a) class distribution of instances, (b) initial state,
(c) goal statement

TIONS* to find out what three-goal interacting problems are stored in the case library.
As *GOAL-INTERACTIONS*[3] is nil and therefore no past-case is returned, step 17
sets no-goals to 2, i.e., the procedure proceeds searching for two-goal interacting past
cases.

The procedure Find__Another-Similar accesses the vector *GOAL-INTERAC-
TIONS* again and *GO AL- INTERACTIONS* [2] returns the class-parameterized
conjunctive goal ((inside-airplane OBJECT AIRPLANE) (inside-truck OBJECT -
TRUCK)) which unifies at the class level with two of the goals of the new problem,
namely (inside-airplane ob5 p18) and (inside-truck ob13 tri). The pro-
cedure Find.AnotherSimilar takes this goal to access the hash table *CLASS-
GOAL-PARAMETERIZED-GOAL* which returns the parameterized goal ((inside-
-airplane <p58> <a25>) (inside-truck <p41> <t6>)) which is returned as the
first past-case to try to further match.

Step 8 calls the procedure Match-Goals which returns matched-goals set to
((inside-airplane ob5 p18) (inside-truck ob13 trl)) and the goal-substitu-
tionsetto ((<p58> . ob5) (<a25> . p18) (<p41> . ob13) (<t6> . trl)).
The unification requires that the variables be of the same class as the substituting
instances (see definition 6).

With this goal substitution the initial state is matched according to the interacting
foot-printed similarity metric. The discrimination state net which stores the cases
solving this goal is given by accessing the hash table *PARAMETERIZED-GOAL-
INITIAL-STATE* which returns state-net-4. This network has only one case stored
denominated case-multl-100, as shown in Figure 6.3. This case corresponds to
the solution obtained by solving the problems multi by derivational analogy (see
chapter 2).

The procedure MatchInitial-States tries to match the stored foot-printed ini-
tial state, which is the contents of the state net node state-7 (see Figure 6.3), against

114 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

the new initial state. Figure 6.5 (a) shows the past initial state after applying the
already set goaLsubstitution and in (b) it shows the new initial state.

goal-substitution:
((<p58> . ob5) (<a25> . p18) (<p 4 l> . obl3) (<t6> . trl))

State net node state-7 New initial state:
after goal-subb itution:

(inside-truck ob5 trl) (at-obj obS a20)
(at-obj obl3 <po6i>) (inside-truck obl3 tr4)
(at-truck tri <po61>) (at-truck trl aS)
(same-city <po61> <ap29>) (at-truck tr4 a20)
(at-airplane p18 <ap9l>) (at-airplane p18 a20)

(same-city p5 aS)
(same-city p1l all)
(same-city p20 a20)

(a) (b)

Figure 6.5: (a) Foot-printed past initial state of a candidate analog after applying the goal
substitution; and (b) the new initial state (b)

Unifying the two initial states returns only one extra substitution namely ((<ap91>
a20)) with the similarity value of 1 out of 5 literals in the past initial state. As-

sume that there is a threshold of 60% of match required to consider that the match
between the past and new initial state is satisfiable. The match obtained is 1 out of
5, equivalent to only a match of 20%. Satisfied -with._Match returns therefore nil.
The two goals are not considered yet covered by this case and the search for a better
coverage continues.

As there are no other two-goal interacting cases, step 17 decreases the value of
no-goals to 1, which means that the procedure is now going to search for one-goal
cases to cover the three goal conjuncts.

By accessing *GOA L-INTERACTIONS* [11, Find Another.Similar considers
the three one-goal cases stored in the case library, namely ((inside-truck OBJECT
TRUCK)), ((inside-airplane OBJECT AIRPLANE)), and ((at-obj OBJECT AIR-
PORT)). By accessing the hash table *CLASS-GOAL-PARAMETERIZED-GOAL*
on the first goal, past-case is returned as ((inside-truck <p35> <t42>)).

6.3. THE RETRIEVAL PROCEDURE 115

Step 8 calls the procedure Match-Goals which returns matched-goals set to
(inside-truck ob13 tri) and the goaLsubstitution set to ((<p35> . obl3) -
(<t42> . tri)). The state net state-net-1 is returned by *PARAMETERIZED-
GOAL-INITIAL-STATE* of (inside-truck <p35> <t42>) (see Figure 6.2).

The procedure MatchInitial-States matches the new initial state against the
stored foot-printed initial state first at the top level state net nodes, namely state-6
and state-4 (see Figure 6.3). These nodes are closer to the root, which means
that their literals are more relevant than the literals at the nodes further away from
the root. Figure 6.6 (a) shows the past initial state after applying the already set
goaLsubstitution and in (b) it shows the initial state for the new problem.

goal substitut ion:
((<p35> . ob13) (<t42> . trl))

State net rode state-6 New initial state:
after 6 - L-substitution:

(inside-truck ob13 <t63>) (at-obj ob5 a20)
(at-truck trl <ap47>) (inslde-truck ob13 tr4)
(at-truck <t63> <ap8>) (at-truck trl a5)
(at-airplane <a24> <ap8>) (at-truck tr4 a20)

(at-airplane p18 a20)
(same-city p5 a5)
(same-city pll all)
(same-city p20 a20)

(a) (b)

Figure 6.6: (a) Foot-printed past initial state of another candidate analog after applying
the goal substitution; and (b) the new initial state

The two initial states unify with the substitution ((<t63> tr4) (<ap47>
aS) (<ap8> . a20) (<a24> . p18)). The similarity value is a match of four lit-
erals out of the total four literals in the past foot-printed initial state. With the
same threshold of 60% to consider satisfiable a match value of a past case, the proce-
dure Satisfied -with..Match returns true. The goal (inside-truck obl3 trl) is
considered covered by case case-ex4-4. Step 13 proceeds to try to cover the other
goals.

116 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

An identical situation occurs for the goal (inside-airplane ob5 p18). As an
exercise the reader can confirm that this goal is covered by case case-ex2-1 stored
at state-net-2 with the total-substitution set to ((<p25> . ob5) (<a70> . p18)
(<ap29> . a20)). The match value is 50% as only one of the two literals matches,
namely (at-obj ob5 a20). In the past case the object and the airplane are at differ-
ent airports while in the new problem they are at the same airport. The match value
is not above the preestablished threshold of 60%, but it is above an also preestablished
minimum covering threshold of 30%. The goal is considered covered by this case as
there are no other candidates covering cases.

Finally the goal (at-truck tr4 p20) is not covered by any past case. Figure 6.7
shows a trace of the final returned set of covering cases.

<cl> (retrieve-analogs Imult2)

Analogs to prob mult2:
(((inside-airplane obS p18) case-ex2-1

((<p25> . obS) (<a70> . p18) (<ap29> all))
1 0.5 2 "state-net-2")

((inside-truck ob13 trl) case-ex4-4
((<p35> . obl3) (<t42> . trl) (<t63> tr4) (<ap47> . a5)

(<ap8> a20) (<a24> . p18))
4 1.0 5 "state-net-i")

((at-truck tr4 p20) 'no-case))
nil
<cl>

Figure 6.7: Retrieving similar past cases for problem mult2

Each goal is associated with a guiding case, if one was found. For each goal the
figure shows additionally the substitution, the number of literals matched in the initial
state, the match degree, the total number of literals matched in the goal and initial
state, and the discrimination network for the guiding case,

6.4. TRADING OFF RETRIEVAL AND SEARCH COSTS 117

6.4 Trading off retrieval and search costs

In pure general-purpose problem solvers, the cost of search is exponential in the length
of the solution. In pure CBR systems the cost of retrieval is very high as the system
fully relies on retrieving the best case in memory to maximize its chance of successful
adaptation. In this section I explore the trade-offs of balancing the cost of retrieving
and the residual problem solving cost.

The organization of the memory is such that the indices for the cases are less rele-
vant as their indexing features move away from the root of the discrimination network.
For a given a new problem P with initial state S' and goal 9P, the absolute maximum
possible match value is simply absolute.maz.match = length (9p) + length (SP).

In general, the purpose of the integration of analogy and search is to reduce
the size of the search space in terms of the number of the nodes searched and conse-
quently achieve an improvement in running time. Harandi and Bhansali [Harandi and
Bhansali, 1989] confirmed that analogy would be useful if the time to find analogs is
small and the degree of similarity is high. Hickman, Shell, and Carbonell [Hickman
et al., 1990] also showed that internal analogy can reduce the search cost. I show
now that there is an optimal range of retrieval time to spend searching for candidate
analogs. Intuitively the deeper that memory is searched, the more confidence on
the retrieved analogs and expectedly the less search required by the problem solver.
However searching memory also takes time. Is there, hence, an optimal amount of
effort to spend searching memory?

The memory is organized in such a way that the confidence on the match degree
increases monotonically with retrieval time [Kolodner, 1984, Schank, 1982] though not
necessarily in a linear manner. This also means that there is always one (or more)
case(s) available to return when retrieval is halted. If the retrieval time increases,
then more cases are compared or more matching can be done for a particular case.
To capture this effect in a simple way, let

"* t, be the time spent to retrieve a similar past case,
"* bt, be the match value between the case retrieved and the new problem,
"* m be the absolute.max.match as introduced above, and
"* d be the percentage of deviation from the absolute.max.match of the

match value of the case retrieved if the retrieval time is null (or close to
null).

To capture the fact that the match degree increases with the time the algorithm
spends retrieving, I say that

bt, = m(1 - dC- tr), (6.1)

118 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

where C and a are constants.
Figure 6.8 sketches three possible curves for the match value as a function of the

retrieval time. Curves 1 and 2 show situations where the initial match is poor, i.e.,
with low match degree. However for curve 1 the rate of match-degree improvement is
very low (low a) while for curve 2 the match degree increases rapidly with the retrieval
time. Situations 1 and 2 depict two different rates of improvement for the match result
while traversing down the discrimination net. Curve 3 plots a situation where the
initial match is immediately high and continues to improve gradually towards the
maximum.

]Mt ch. mA ... a

degree----

variable retrieval tiMe

Figure 6.8: Three different curves for the match value as a function of the retrieval time

In the situations captured by the curves 1 and 3, the system should not invest a
long time in retrieving a better, or best similar past case. In both cases termination
occurs because the rate of improvement, a, is low. In case 1, the system should solve
the problem using the basic problem solver search, because there are no good cases.
In case 3 it should immediately start derivational replay on the retrieved high-match
case, rather than waste time seeking a marginally better one. Situation 2 illustrates
the case where retrieval time is more wisely invested. Given the fact that the match
degree is on average directly related to search savings in problem solving, I now show
analytically that there is an optimal amount of effort to spend searching memory.

PRODIGY's search tree can be viewed as an OR-tree, branching alternatively
among possible goal orderings and possible operators to achieve a goal. Let b be
the average branching factor of the search tree, 1 be the solution length for a given
problem, and S be the search effort without analogy. Then the complexity of S is
[Hickman et al., 1990], S = 0(b°(')). (From now on I skip the order of, 0, notation
for simplicity.) Assume that the effect of analogical reasoning is captured in a de-
crease of the average branching factor (Hickman et al., 1990]. This reduction of the
search effort iF in direct relationship with the match degree of the guiding case(s).

6.4. TRADING OFF RETRIEVAL AND SEARCH COSTS 119

Let Sa,.l,,,o be the search spent with analogy. I can then say that, for some linear
function f,

Sanaog, = ((1 - f(6t))b)'. (6.2)

The goal of the integrated analogical reasoner is to improve the effort to reach a
solution: PS search time plus memory search time [Harandi and Bhansali, 1989]. The
objective is to find the situation when this sum is much smaller than brute-force PS
search without any analogical guidance. I capture this goal in the inequality below,
where it is not represented, for simplicity, the function f introduced in eq. 6.2:

t, + ((1 - 6t,)b)' < b'. (6.3)

Substituting eq. 6.1 into the eq. 6.3, I get the final equation as a function of the
retrieval time t,:

t, + (1 - m(1 - dC- t0))'b1 <« b (6.4)

optimal
"interval

$04

S* 1

..............:..:.....................

t retival

Figure 6.9: Retrieval time (curve 2) plus analogical search effort (curve 1)

Figure 6.9 sketches the left hand side of inequality 6.4.0 Analyzing this qualitative
curve, I conclude that there is an optimal retrieval time interval, which is a function
of the dynamic match rate a. Retrieval should then stop when a given threshold is
reached, namely when the derivative of the expected search savings approaches the
incremental memory search cost.

3This smooth curve does not correspond to data from any particular domain. It captures solely
the qualitative behavior of the search effort according to our analytical analysis.

120 CHAPTER 6. AUTOMATIC RETRIEVAL OF CASES

6.5 Summary

The major points to remember from the retrieval procedure developed are:

"* The similarity metric considers the foot-printed initial state and the goal inter-
actions of the past cases.

"* Hash tables prune the set of candidate analogs as early as possible.

"* The matching is done incrementally until a "reasonable" similar set of past cases
is found according to a previously set threshold for the partial match.

Chapter 7

Automatic Utilization of Cases

How to reuse episodic problem solving experience?

This chapter presents the last phase of the analogical problem solving cycle, i.e.,
the replay mechanism. The previous chapters build up the framework to reach this
point where the base-level problem solver is extended with the ability to solve prob-
lems by replaying the problem solving episodes of the set of the retrieved similar past
cases.

The chapter is organized in five sections. The first section presents an informal
description of the replaying procedure. The section outlines the method, and discusses
its advantages in terms of the problem solving search reduction and in terms of the
memory reorganization. Section 2 states formally the replay algorithm as an extension
to the base-level problem solver presented in chapter 3. The section shows how
the similar past cases guide the problem solving steps. The replaying functionality
converts the base-level problem solver from a generator and explorer of different
search directions to a tester of the validity of past choices, while still being able to
generate solutions if the cases don't cover the problem adequately. The third section
offers examples on the reuse of a few justifications. Section 4 discusses the method
proposed to dynamically reorganize the memory indices based on the feedback that
the analogical problem, solver may provide on the utility of the guidance received.
Finally section 5 summarizes the chapter with a revision of the techniques developed.

7.1 Replaying past problem solving episodes

The previous chapters 4 and 5 showed how the derivational traces of the problem
solving episodes, i.e., the cases, are generated and stored into the case library. Chap-
ter 6 further presented the process to retrieve past cases similar to a new problem

121

122 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

solving situation. The next step consists of extending the problem solver into an ana-
logical reasoner by incorporating into its algorithm the functionality of replanning
from past problem solving episodes. These are supplied to the analogical planner as
a sequence of decision nodes annotated with the justifications supporting the choices
that succeeded or failed.

The general replay mechanism involves therefore a complete interpretation of the
justification structures in the context of the new problem to be solved, and the de-
velopment of adequate actions to be taken when transformed justifications are no
longer valid. When solving new problems similar to past cases, one can envision two
approaches for derivational replay:

A. The satisficing approach - Minimize planning effort by solving the problem as
directly as possible, recycling as much of the old solution as permitted by the
justifications.

B. The optimizing approach - Maximize plan quality by expanding the search to
consider alternatives of arbitrary decisions and to re-explore failed paths if their
causes for failure are not present in the new situation.

This thesis so far implements in full the satisficing approach, although work on
establishing workable optimizing criteria may make the optimizing alternative viable
(so long as the planner is willing to invest the extra time required). Satisficing also
accords with observations of human planning efficiency and human planning errors.

7.1.1 Outline of the replay procedure

In the satisficing paradigm, the system is fully guided by its past experience. The
syntactic applicability of an operator is always checked by simply testing whether
its left hand side matches the current state. Semantic applicability is checked by
determining whether the justifications hold (e.g., whether there is still a reason to
apply this operator). For all the choice points, the problem solver tests the validity
of the justifications (its semantic applicability, or rather its "desirability" in the new
situation). In case the choice remains valid in the current problem state, it is merely
copied, and in case it is not valid the system has two alternatives:

1. Replan at the particular failed choice, e.g., establishing the current subgoal
by other means (find an equivalent operator, or equivalent variable bindings)
substituting the new choice for the old one in the solution sequence, or

2. Re-establish the failed condition by adding it as a prioritized goal in the plan-
ning, and if achieved simply insert the extra steps into the solution sequence.

7.1. REPLAYING PAST PROBLEM SOLVING EPISODES 123

In the first case (substitution), deviations from the retrieved solution are mini-
mized by returning to the solution path after making the most localized substitution
possible.

The second case occurs for example, when the assumptions for the applicability
of an operator fail. The system then tries to overcome the failed condition, and if it
succeeds, it returns to the exact point in the derivation to proceed as if nothing had
gone wrong earlier. If the extra steps performed do not interfere with the already
replayed case steps, the extension occurs without further problems. It may also
happen that future steps in the case continue to fail and the case is abandoned.

The two situations may also be described in terms of their effect in how the cases
are followed. When the justifications hold, the past choices are transferred to the
new context. The cases are advanced to propose to the next potentially useful steps.
When the justifications are not valid, then any of the two alternatives described above
may correspond to the following actions in the guiding cases:

1. Suspend the guiding case if some extra planning work is needed. For example,
this corresponds to the situation where an operator was .applied in the past case,
and now in the new problem, it cannot be applied yet, as one of its preconditions
is not true in the state yet. The replay procedure diverges from the guiding case
and tries to replan or recursively tries to find another case that can guide the
reachievement of the particular preconditions.

2. Advance the guiding case when some of the past planning work is not necessary.
For example, this corresponds to the situation where the past case subgoals in
a literal that is now already true in the state. The replay procedure tries to
advance the case to the next step that can be replayed.

Deviations theoretically could lead to total divergence from the set of guiding
cases. This does not occur however when the adequate foot-print similarity metric is
used. The foot-printed initial state which is compared to the new situation captures
the relevant features of the initial state in terms of the goals to be achieved and as a
function of the solution to be replayed. While the case library is .iot rich enough in
a diversity of cases, the retrieval procedure generally returns a smaller set of guiding
cases rather than a larger set of not suitable ones.

Justification structures also encompass the record of past failures in addition to
just the subgoaling links [Bhansali, 1991, Kambhampati, 1989, Mostow, 1989]. This
allows both the early pruning of current alternatives that were experienced to have
failed in the past, and the exploration of alternatives for which the past reason of
failure does not exist in the current situation. Furthermore, the replay mechanism

124 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

in the context of casual commitment as opposed to least commitment allows nat-
urally to combine guidance from several past problem solving episodes. Replicated
adapted decisions can be interleaved and backtracked upon within the totally ordered
reasoning plan.

Figure 7.1 outlines in a nutshell the replay procedure.

"* Select a case to follow: arbitrarily or by using any other strategy to merge
the guidance from the multiple source similar cases.

"* Get relevant operators from past cases.
"* Prune alternative failures from the current search path if the justifications

of the past failures hold.
"* Check syntactic applicability of an operator by testing whether its left

hand side matches the current state.
"* Semantic applicability of decisions is checked by determining whether the

justifications hold.
"* If choice is not valid, choose the suitable action:

"* Suspend the guiding case if some extra planning work is needed,
and

"* Retrieve additional case(s) for problem encountered.
"* Or base plan.

"* Advance the guiding case when some of the past planning work
is not necessary.

"* Change the focus of attention by selecting another guiding case.

Figure 7.1: Informal outline of the replay procedure

7.1.2 Advantages of replaying

The replay functionality transforms the problem solver, from a module that costly
generates possible operators to achieve the goals and searches through the space of
alternatives generated, into a module that tests the validity of the choices proposed
by the past experience and follows equivalent search directions.

As an example, consider Figure 7.2 which shows the transfer of choices from two
past decision nodes.

The past goal node (inside-truck ob4 tr9) is transferred to the new context.
This node was achieved in the past by loading the object ob4 into the truck tr9
at some post office that is not instantiated yet, <poff>. Recall that the retrieval
procedure returns a partial instantiation for the variables of the past guiding cases.
Now at replay time, the algorithm checks whether this operator is still relevant to

7.1. REPLAYING PAST PROBLEM SOLVING EPISODES 125

NEW PAST

(inside-truck ob4 tr9) (inside-truck ob4 tr9)

(load-truck ob4 tr9 poff7) • (load-truck ob4 tr9 41pof>)

:sibling-ops

((load-truck ob4 <airp>)(goal-loop
(inside-truck ob4 tr9)))

Figure 7.2: Transfer from past decision nodes- an example from an operator transfer

the goal. It fully instantiates the operator by following any justifications available.
In this case there is only the implicit post-office type of the variable <poff>. The
replay algorithm chooses an instance of this class and adds the bindings (<poff>
poff7) to the current partial instantiation.

In addition to providing the operator that achieves the goal, the past case also
provides information about all the other alternatives available. The ones that were
explored in the past and failed have the record of their failure reason. In particular
in the sketched example of Figure 7.2, the alternative operator of loading the object
into the truck at an airport was explored and failed in the past, because the problem
solver encountered a goal loop with the goal (inside-truck ob4 tr9). As this same
goal is present in the current active search path of the new search tree, the replay
procedure prunes that alternative from the new operator node. This early pruning
step signifies a reduction in the number of alternatives corresponding therefore to a
decrease in the branching factor of the new search tree.

In a nutshell and informally, the replay procedure provides the following benefits
to the problem solving procedure:

e Proposal and validation of choices versus generation and search of possible al-
ternatives.

* Reduction of the branching factor - past failed alternatives are pruned up front.

* Subgoaling links identify the subparts of the case to replay - the steps that are
not in the subgoaling chain of active goals are skipped.

126 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

7.1.3 Feedback to memory

The analogical problem solver has the potential to interpret the utility of the guid-
ance provided by the similar retrieved cases. The degree of success that it experiences
transferring the past choices to the new context allows the problem solver to delib-
erate on the appropriateness of the similarity metric used. Figure 7.3 sketches four
situations that may happen during the transfer process.

new new new new
ast ast ast ast

pas

(a)

(c) (d)

(b)
Figure 7.3: Four situations to encode the utility of the guidance received: (a) Fully-
sufficient: past case is fully copied; (b) Extension: past case is used but additional steps
are performed in the new case; (c) Locally-divergent: justifications do not hold and invali-
date transpose part of the past case; (d) Globally-divergent: extra steps are performed that
undo previously transferred steps.

If a case was fully-sufficient under a particular substitution, the memory manager
generalizes its data structure over this match updating the indices to access these
cases. If the new problem is an extension of the previous case, the conditions that lead
into the adaptation and extension work are used to differentiate the indexing of the
two cases. The situations where the two cases diverge represent a currently incorrect
memory concept of similarity or lack of knowledge. The case is locally-divergent when
some justifications do not hold and invalidate the transfer of remaining of the case.
The case is globally-divergent if the new situation requires extra steps that undo some
of the previously transposed steps.

7.2. THE REPLAY ALGORITHM 127

The fact that the retrieval mechanism suggests a past case as most similar to the
new problem and the problem solver cannot fully use the past case or even extend it,
indicates either the sparsity of better cases in memory, or a similarity function that
ignores an important discriminant condition. The memory manager either special-
izes variables in the memory data structures due to previous overgeneralization or
completely sets apart the two cases in the decision structure used for retrieval.

The system learns by experience with its performance evolving from eventual
global and local divergent transfers to extension or fully-sufficient cases.

Each case is retrieved as a guiding case for a set of goals from the goal statement.
Therefore each case covers a set of goals. A case is abandoned when all the goals
it covers are achieved. Until all the covered goals are achieved, the corresponding
guiding case is always considered as a source of possible guidance and the problem
solver keeps it active. The covered goals may be achieved by transferring all the
steps of the guiding case or there may be local or global divergences. If a divergence
is found, the guiding case stays active but suspended at the diverging step. The
replay algorithm continues to test for additional transfer. When a local divergence
is resolved the transfer continues successfully. If the divergence is global, the case
remains suspended and the problem solver is not able to return back to it until all
the covered goals are achieved by different means. At this point the suspended case
is abandoned as its covered goals are achieved.

7.2 The replay algorithm

Chapter 3 presented the base level problem solver, NOLIMIT, which searches for a
solution to a problem by using the available domain theory. As the complexity of the
problems and domains increases, NOLIMIT becomes less efficient as the size of the
search space expands exponentially with the length of the solution. NoLIMIT must
then rely on control knowledge to direct its problem solving activity pruning the search
space. This thesis explores a method to automatically acquire control guidance by
compiling and reusing successful problem solving episodes annotated with the failures
encountered and the reasoning process experienced. NOLIMIT's base level problem
solving ability is then enlarged with the capability to generate and reuse this episodic
control guidance.

Chapter 4 extends NOLIMIT's problem solving procedures with the functionality
to generate the annotated search episodes. This section presents formally how these
problem solving procedures are augmented with the mastery to use the control guid-
ance provided by the similar problem solving episodes in addition to the available
domain theory.

128 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

Figure 7.4 shows the main problem solving procedure as previously also shown in
Figure 3.7 and discussed in section 3.3.

Input : A search tree T = (N,E), sets AN,YN,SN of the active, failed, &ad suspended
search tree nodes, and act. the active leaf node.

Output : An expanded search tree T' = (N',E'). nes sets ANo,'rN,SN' of the ne0 active,
failed, and suspended search tree nodes. and an updated active leaf node.

procedure ProblemSolvingStep (N, E, AN, FN, SN, act):
1. children-set +- Generate-Children (T, act)
2. if children-set = 0

then
3. Return Backtrack-Path (N, E, AN,YFN,SN, act, no-choices, children-set)

else
4. N' = NU children-set
5. E' = U U {(act, n) : n E children.set}
6. T' =(N',E')
7. termination-reason +- Check-Termination..Reason (AN, act)
8. case termination-reason
9. success
10. Return Success (N, E, AN,Y.N, SN, act)
11. failure
12. Return Backtrack..Path (N, E, AN, FN,SN, act,

termination-reason, children-set)
13. shift.attention
14. Return Backtrack-Path (N, E, AN, YN, SNU children-set, act,

termination-reason, 0)
15. otherwise
16. Sý = SNU children-set
17. Return PursueActive-SearchPath (act,children.set, T')

Figure 7.4: Problem solving stepping

This top level stepping procedure remains unchanged and the replay ability is
added to its two constituent phases, namely the expand and the commit ones,
captured mainly by the steps 1 and 17 respectively. The next section describes how
the replay of the guiding cases transforms the expansion phase from a generation task
into a testing one. The following section presents the commit phase driven by the
episodic past experience.

7.2. THE REPLAY ALGORITHM 129

"7.2.1 Generation of new search directions

When no similar guiding cases are available, the problem solver spends a large search
effort matching the current problem solving state against its domain theory to resolve
what is the suitable next problem solving step. Even when individual control rules are
present to help pruning the search tree, it is still a recognized problem [Minton, 1988]
to determine which control rules apply to the particular problem solving circumstance.

A guiding case records the sequence of decisions that directed the problem solver
through the search space in the past similar problem solving episode. The analogical
problem solver follows the guiding cases keeping pointers to the individual steps
transferred. The subsequent steps to the current last transposed ones of each of the
individual guiding cases are the steps that the analogical reasoner considers as the new
possible next steps. Hence the matching cost of deciding which domain knowledge
applies is drastically reduced to a well-defined test on the appropriateness of the
proposed new steps. Through the similar cases returned by the retriever the analogical
problem solver gets guidance for each individual step of the complete reconstruction
process.

Input : A search tree T = (N,E), the active leaf node act.
Output : A set of the search children available.

procedure Generate-Children (T, act):
1. D - the domain theory: operators, inference rules, functions, and control rules.
2. case act
3. goal node

3a. guiding-case -- Link_-To-PastCase (act)
3b. if guiding-case
3c. then child -- Validate _Op_-PastCase (guiding-case, act)
3d. if child
3e. then Return child

4. else Return ComputeRelevantInstantiatedOperators (act, T, D)
5. otherwise
6. pending-goals-set - Compute-Pending-Goals (act, T)
7. applicable-operators-set - Ideutify.ApplicableOperators (act, T)
8. Return pending.goals3set and applicable-operators-set

Figure 7.5: Generating the children for a problem solving search tree

The procedure Generate-Children returns the set of possible choices to pursue
in the problem solving search tree.

There is a functional distinction between the generation of children search nodes
for a goal node and for the other kind of nodes. When the problem solver commits to
pursue a specific goal (the active leaf node is that goal), then the next step is to find

130 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

the operator that is relevant to this goal. This operator can be obtained from the
past guiding case for the goal, if there is one such case. Hence the expansion phase
for a goal node (generating its relevant operator) is guided by the past case and the
commit phase is mostly passive as the choice is determined at generation time. The
next step after an operator is chosen or applied is a new goal to pursue or a new
operator to apply. These new steps are "independent" from the last search node.
The expansion phase for a chosen or applied operator is not guided by the past cases
as the set of pending goals and the set of applicable operators is directly computed
from the active search path. The commit phase however is strongly guided by the
past cases determining the new next step.

The boxed steps 3a through 3e in Figure 7.5 show the extension to this procedure
that enables it to return the operator relevant to a goal from the guiding case. When
the active leaf node, act, is a goal node, step 3a determines whether act is linked to
a past case, i.e., whether the decision to work on that goal was guided from a past
case. If this is the situation, step 3c tries to validate the relevant operator chosen in
the past case. If the justifications for the past choice are no longer valid, then the
procedure Validate-Op.-Past-Case returns a null child as checked at step 3d. In
this situation the problem solver proceeds to generate the children search steps from
its domain theory (step 4) as the base-level NoLIMIT does.

If the active leaf node is not a goal node, then the generation of children progresses
by computing the set of pending goals and applicable operators. This step does
not involve any matching (unification) effort. It consists of a look up along the
active search path for the operators selected to determine either the corresponding
preconditions that are not yet true in the current state or to identify the operators
that can be immediately applied as their preconditions are already achieved. The past
cases guide the decision making step (commit phase) of choosing what goal to pursue
next from the set of pending goals or which operator to apply from the set of applicable
operators. The next section shows the procedure PursueActiveSearch_-Path that
is extended to follow this guidance for the commit phase of the algorithm.

Figure 7.6 shows the procedure that validates a relevant past operator by checking
whether the annotated justifications still hold in this new problem solving situation.

Step 1 of the procedure identifies the specific guiding step from the guiding case
to which the active search node is linked. When the retrieval procedure returns
the set of similar past cases, it also identifies a role substitution by which the past
and new situations are found similar (see chapter 6). However as only the goal
statements and initial states are used to determine the similar past cases, this role
substitution provides in general a partial instantiation for the parameterized variables
of the past case. Therefore the role substitution available also partially instantiates
the relevant past operator. Step 2 completes the instantiation, if needed, and applies

7.2. THE REPLAY ALGORITHM 131

Input : The active #Uidinagceae and the active goal node act.
Output : The relevant operator used in the past case validated if its justifications still

hold; otherwise nil.

procedure Validate _.Op-Past -Case (guiding-case, act):
1. guiding-step - Pointer.ToActiveStep (guiding-case)
2. candidate.op - ApplyAnd..Extend-Substitution (choice (guiding.step))
3. if Relevant-To (candidate.op, act)

then
4. if Justifications Hold (why-this-operator (guiding-step), candidate.op)
5. then Advance-Case (guiding-step, guiding-case)
6. Return candidate.op
7. else Advance-Case (guiding.step, guiding-case)
8. Return nil

Figure 7.6: Validating the past chosen operator

the obtained substitution to the past choice. The argument to the procedure Apply-
And_.ExtendSubstitution, namely choice (guiding.step), is the value of the slot
:choice of the past search node, guiding-step.

To illustrate the partial instantiation provided by the retrieval procedure being
extended at replay time, consider the two problems sketched below:

Past case: New situation:
(goal (inside-truck <obS> <tr9>)) (goal (inside-truck obll trl4))

(foot-printed-state (state (and ...
(inside-airplane <obS> <p17>) (inside-airplane obll p110)
(at-truck <tr9> <poll>) (at-truck trl4 a99)
(same-city <poll> <a49>) (at-airplane p110 a3)
(at-airplane <p17> <a45>)) ...))

Suppose that the retrieval procedure returns the following substitution: ((<ob5>
obl1), (<tr9> . trl4), (<pi7> . p110), (<a45> . a3)). Figure 7.7 shows

a fragment of the trace of the replay run. After step 3 the replay algorithm accesses the
relevant operator used in the past case, namely (load-truck obll tr14 <ap63>).
One of the arguments of this operator is not instantiated by the partial instantiation
returned by the retrieval module, namely the variable <ap63>. The substitution is
completed at replay time. As the variable is of the class airport, the substitution is
completed with the bindings (<ap63> a99) and reused in the future case steps,
as shown in the steps 4 and 5.

Returning to the presentation of the algorithm of Figure 7.6, step 3 tests if the
operator is still relevant to the goal at the active leaf node. The operator is relevant if

132 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

Following case-step caue-rep3-4-2.

3. tn3 (inside-truck obl1 trl4)

Oetting candidate pant chosen-op snode.
Case step to compare (load-truck obli tr14 <ap63>)
Following case!
Following case-step case-rep3-4-3.

4. tn4 (load-truck obll tri4 a99)

go applicable-op (or forget about it, because decision is SUBGOAL)
Checking for a case to follow.
These are the available cases ((case-rup3-4 . case-rep3-4-4))
Only one pending goal: (at-obj obll &99).
Found case step for unique goal caue-rep3-4-4.
Case was advanced one more search cycle

to step case-rep3-4-6: (at-truck tr14 &99).
Following case-stop case-rep3-4-4.

S. taS (at-obj ob1l a&")

Figure T.T: Role substitution added at replay time

one of its effects unifies with the goal, which means that the goal is achieved when the
operator applies to a state which is an element of the class of states represented by the
set of its preconditions. At step 4, the procedure Justifications-Hold tests whether
the reasons for the choice of this operator still hold in the current new situation. The
operator decision node records the reasons why-this-operator was selected in the past.
Finally steps 5 or 7 advance the case to the next potentially transferable step.

Chosen Op lode :choice is used to get the pointer to the operator description;
:choice :sibling-relevant-ops is used to prune the alternative oper-
:sibling-relevant-ops ators if the reasons of failure experienced in the past still
:why-this-operator hold;
:relevant-to :why-this-operator is used to test whether the choice

agrees with the explicit direction provided in the past;
:relevant-to is used to identify the goal(s) that dictated the

selection of this operator.

Figure 7.8: Reusing the justifications of a chosen operator node

Figure 7.8 summarizes the reuse of the justifications annotated at a decision node
corresponding to the choice of an operator. The next section shows how a past goal
choice or a past choice to apply an operator determines the choices in the new context.

7.2. THE REPLAY ALGORITHM 133

7.2.2 Pursuing the search

After the procedure Generate-Children identifies the possible next search steps,
i•he problem solver faces a "committing" phase to decide which particular step to
pursue. Figure 7.9 shows the procedure Pursue.Active-Search.Path.

Input : A search tree T = (N,E), the active leaf nods act, and the set of children nodes.
chiudren..e returned by Generate-Children.

Output : A new active leaf node.

procedure PursueActiveSearchPath (act, children-set, T):
1. case act
2. goal node
[2a. if is-linked-to-past-case (act) and children-set

2b. then new-active-leaf +-unique child in children-set

3. else new.activeleaf -- Controlled-Choice (operator, children.set,T)
4. otherwise

4a. guiding-cases +- Active.Guiding -Cases
4b. if guiding-cases
4c. then new.active-leaf

+- Validate-Step_-Past-Case (guiding-cases, act, children-set)

4d. if not new.active-leaf
then

5. applicable.ops - {n E children.set: n is an applicable operator }
6. pending-goals -- {n E children-set: n is a goal }
7. apply-or.subgoai *- subgoal
8. if applicable.ops # 0

then
9. apply-or-subgoal +- Controlled-Choice (apply-or-subgoal, children-set, T)
10. if apply-or-subgoal = apply
11. then newuactive-leaf -- ControlledChoice (apply, children-set, T)
12. Apply-Operator (new-active-leaf)
13. if apply-or-subgoal = subgoal and pending-goals $ 0

then
13a. if Wort hRecursively_-Retrieve (pending-goals)
13b. then Get_-Additional _G uidingCases (pending-goals, Current-State)
13c. go to step 4a
13d. else

14. new.active-leaf -- Controlled-Choice (goal, children.set, T)
15.if new-active-leaf
16. then Update.Node-Status (new.active-leaf, T)
17. else Backtrack.Path (T, act,@)

Figure 7.9: Committing in the active search path

134 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

The boxed steps 2a-2b, 4a-4d, and 13a-13d show the functionality added to the
base procedure to consider the past cases to guide the choice of the next step to
pursue.

When the active search node is a goal node, the procedure Generate-Children
validates the operator that is found relevant to the goal in the past guiding case. The
commitment is therefore done at generation time and steps 2a and 2b return the choice
already selected ;-a this situation. Steps 4a through 4d handle the complementary
situations where the active search node is either a chosen or applied operator node.
The problem solver incurs first on the validation of a past choice at step 4c. When
this validation procedure ValidateStepPast-Case does not find a just'fied past
choice, as tested at step 4d, then the algorithm proceeds as if it were not guided
(steps 5-13 and 14-17).

If the problem solver encounters a new unguided subgoal, steps 13a-13d show that
the replay algorithm may recursively invoke the retrieval of additional guiding cases
for the current set of pending goals. The procedure Worth_-RecursivelyRetrieve
at step 13a decides whether this recursive invocation of guidance is worth pursuing.
This decision may be as elaborated as desired and may be based on -, prediction of
the complexity of the new goal encountered. In particular in the experiments run in
this thesis, the problem solver has a predefined ranking of the goals that dictates the
decision of the recursive retrieval. It is a challenging future work extension to this
thesis to apply machine learning techniques to support the automatic improvement
also of this level of decision making.

Figure 7.10 shows the procedure that accomplishes the validation of the goal and
applied operator choices at the past cases.

The procedure consists of two interleaved phases of merging and validating the
candidate possible steps from the several guiding cases.

Merging multiple guiding cases

The replay procedure works its reconstruction mechanism from a set of guiding cases
as opposed to necessarily a single past case (see chapter 6). This enhancement con-
stitutes a powerful technique to get guidance from complementary individual past
cases. The replay of multiple cases proves to be highly useful for complex problems
that may be solved by resolving minor interactions among simpler past cases. Fol-
lowing several cases however poses an additional decision making step of choosing
which case to pursue. Resolving at this level of decision making may be seen as an
instance of meta-level reasoning in a higher level of abstraction than the domain level
decisions, such as which operator to apply, or which goal to pursue next in order
to solve a user given problem situation. Although developing a learning method for

7.2. THE REPLAY ALGORITHM 135

Input : The set of #sidin$.cesce, the active leaf node act, and the set of children nodes,
cAildree.at returned by GenerateChildrea.

Output : A new active leaf node from a gu1ding came.

procedure Validate Step ..Past -Case (guiding-cases, act, children-set)
1. merging-strategy +- ActiveCaseMergingStrategy (guiding-cases, children-set)
2. guiding-case +- Choose-Case (merging.strategy, guiding-cases, act, children-set)
3. guiding.step . Next-Case.Step (guiding-case)
3. case guiding-step
4. goal-decision
5. candidate-goal +.- Apply-Substitution (choice (guiding.step))
6. if Justifications Hold (why-this-goal (guiding-step), candidate-goal)
7. thenAdvanceAllCases (guiding-case, guiding-cases)
8. Return candidate-goal
9. else merging-strategy +-- exploratory
10. guiding-cases +- guiding-cases \ {guiding-case}
11. go to step 2
12. applied-operator-decision
13. candidate_.applied-op +- Apply-Substitution ((choice (guiding.step)))
14. if Applicable-Operator (candidate-applied-operator)
15. Justifications -Hold (why-this-operator (guiding-step),

candidate-applied-op)
16. then AdvanceAllCases (guiding-case, guiding-cases)
17. Return candidate-applied-op
18. else merging-strategy -- exploratory
19. guiding-cases +- guiding-cases \ {guiding.case}
20. go to step 2
21. otherwise
22. Return nil

Figure 7.10: Validating a new step from a past case

meta-level decision making is beyond the immediate focus of this work, I explored
a few different strategies to merge the guidance from the several cases from the set
of similar cases. Figure 7.11 presents the procedure to choose a case from the set of
guiding cases which shows four different merging strategies:

Serial: The cases are merged serially one after the other. The particular initial merg-
ing ordering of cases is randomly chosen. The procedure Link-To_-PastCase
at step 3 returns the last case that has been followed. When all the steps of a
case are reused or the case is abandoned then the next case in the serial order
As returned and followed.

136 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

Round-robin: This is an opposite strategy to the serial one. The cases are max-
imally interleaved by following a step of each case at a time. The particular
initial merging ordering of the cases is also randomly chosen. The procedure
NextCase..After returns the next case in the merging ordering after the case
that is linked to the current active search node or after the last guided search
node, if the current node is unguided.

Eager: When there are applicable operators in the children.set, i.e., in the set of
possible next problem solving actions, this eager merging strategy looks for the
past cases that are suspended at steps where any of these particular operators
were applied in the past. Step 1 of the procedure ValidateStepPastCase
(see Figure 7.10) sets this eager merging strategy as the active one in this even-
tuality, i.e., when there applicable operators in the set of children search steps.
The procedure FindApplyingOp_-Case at step 7 finds the guiding case that
point. at an applicable operator from the children-set. The justification struc-
tures at the past cases can provide information about a successful order to apply
several applicable operators.

Exploratory: Finally this strategy merges the cases in a random order. The proce-
dure RandomlyPickCase returns a case arbitrarily chosen from the set of
guiding cases.

Input : The set of gnidia•gcasea, the active leaf node act, and the set of children nodes,
childres.jet returned by Generate-Children, and the current merging.atrstegy.

Output : A new case to follow.

procedure Choose-Case (merging-strategy, guiding-cases, act, children-set)
1. case merging-strategy
2. serial
3. Return Link_-To._Past_-Case (act)
4. round-robin
5. Return Next-CaseAfter (guiding-cases, Link-To-Past-Case (act))
6. eager
7. Return Find ApplyingOp_-Case (guiding-cases, children-set)
8. exploratory
9. Return RandomlyPickCase (guiding-cases)

Figure 7.11: Strategies to choose a case to pursue from the set of guiding cases

It is interesting to briefly discuss these different merging strategies. The question
to be addressed is twofold: Which of the merging strategies is more advantageous

7.2. THE REPLAY ALGORITHM 137

to help reduce the problem solving base search effort? And which of the merging
strategies allows the learner to accumulate richer cases in terms of the interactions
among goals? To debate these issues, consider the two extreme situations in terms of
goal interactions, namely:

A, where the set of goals covered by the different guiding cases are all inde-
pendent from each other, and

B, where there are strong interactions among the goals covered by the differ-
ent cases.

In terms of the expected reduction of the problem solving search effort, for situa-
tion A all the merging strategies are equivalent as the goals do not interact. On the
other hand, for situation B, the merging strategy used produces fundamentally differ-
ent results in search reduction. A serial strategy delays to an extreme the detection
of goal interactions. A round-robin strategy may be able to spot the goal interac-
tions rather early and contribute to avoid long undesirable serial search paths. This
strategy provides the maximum benefits but only if the correct initial case ordering
is selected. The exploratory strategy balances these two strategies by allowing cases
to both be serialized or interleaved.

In terms of the accumulation of a wide variety of cases, the learner masters from
a rich problem solving experience. Ideally the learner benefits most from an integral
understanding of the complete search space as a result of its entire exploration by
the problem solver identifying all the failing and succeeding paths. This situation
however is not desirable in terms of problem solving efficiency. For both situations A
and B, the problem solver ends up finding the correct solution after the necessary
search. The learner captures and compiles the existing goal interactions. The issue
is which of the strategies allows a richer exploration of the search space to learn from
success and failures. The serial merging strategy is indifferent for situation A for
both search reduction and learning usefulness. For situation B both the serial and
the round-robin strategies are equally useful from the learning perspective, as they
depend heavily on the initial case ordering. In a nutshell this discussion leads into
the conclusion that the exploratory strategy secures the trade-off between handling
situations A and B successfully both from the search reduction and learning utility
point of views. In the experiments run in this thesis, the merging strategy is fixed to
be the exploratory one. The choices are picked up randomly from the set of available
alternatives, if no additional guidance can be applied.

The procedure Validate.Step_.Past-Case in Figure 7.10 shows that the justi-
fications stored at the case nodes may override an a priori choice of case merging
strategy. In fact steps 9-11 and equivalently steps 18-20 set the exploratory merging
strategy when the justifications of the selected node do not hold in the new context.

138 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

Therefore these two phases of choosing a case and validating the past case step in the
procedure ValidateStepPast -Case are bound together.

Validating the justifications structure

I discuss now the validation phase of the procedure Validate-Step..PastCase shown
in Figure 7.10. After a particular case is chosen to be pursued at step 2, steps 6
through 8 validate the choice proposed if this is a goal decision. Figure 7.12 summa-
rizes the reuse of the justifications annotated at the different slots of a goal decision
node of a guiding case.

Goal lode :choice is used to get the goal literal;
:choice :sibling-goals is used to prune the alternative goal choices
: sibling-goals if the reasons of failure experienced in the past still hold;
:sibling-applicable-ops this justification captures the experienced failed goal or-
:why-subgoal derings;
:precond-of :sibling-applicable-ops is used to prune the alternative ap-plicable operators if the reasons of failure for immediate

operator application instead of continued subgoaling still
hold;

:why-subgoal, :why-this-goal is used to test whether the
choice agrees with the explicit direction provided in the
past;

:precond-of is used to identify the operator(s) that need this
goal.

Figure 7.12: Reusing the justifications of a goal node

Steps 15 through 17 validate the step proposed when this is an applied operator
node. In this situation checking the validity of following the same step simply involves
to check whether the preconditions of the operator are true in the new state, so the
operator can also be applied. Figure 7.13 summarizes the reuse of the justifications
annotated at an applied operator node.

Chapter 4 introduced the language that is used to specify the justifications in
particular at the why- slots. The power of the replay mechanism stems exactly from
the ability to understand and reinterpret the annotations at the past decision nodes.
The generation and replay phases of the analogical process are strongly intercon-
nected. The generation procedure successfully identifies the reasons that support the
decisions made only if it associates with these justifications a meaning that can be
checked at replay time. Figure 7.14 summarizes the actions of the procedure Jus-
tificationsHold that interprets the language of the annotations at the why- slots
which can each take the values select, prefer, reject, case, function, and why-user.

7.2. THE REPLAY ALGORITHM 139

Applied Op Node :choice is used to get the pointer to the operator description;
:choice :sibling-goals is used to prune the alternative goal choices
:sibling-goals if the reasons of failure experienced in the past still hold;
:sibling-applicable-ops :sibling-applicable-ops is used to prune the alternative ap-
:why-apply plicable operators if there was more than one applicable
:why-this-operator:chosen-at operator; orderings of this justification captures the ex-

:preconds perienced particular orderings of applying operators that
:adds failed in the past case;
:dels :why-apply, :why-this-operator is used to test whether

the choice agrees with the explicit direction provided in
the past;

:chosen-at is used to get a pointer to the step where the
operator is chosen; when advancing a case to a suitable
next step, the applied operator steps corresponding to
operators not chosen are skipped;

:preconds is used to test the syntactic applicability of the
operators by checking whether these preconditions are
true in the current world state;

:adds, :dels is not directly used by the replay mechanism,
at decision makiig time; this information to identify the
dependencies among the final steps of the solution.

Figure 7.13: Reusing the justifications of an applied operator node

The why-user and the function slot values are associated with a user-given, or
otherwise known, function definition that at replay time is used as a predicate to
validate the past choice.

:why-this-operator select, reject, prefer: the control rule is evoked
:why-this-goal with the current role substitution; if it applies
:why-apply to this new context the choice is validated,
:why-subgoal otherwise it is not;

select <control-rule-name> case: the case step pointed at is recursively
prefer <control-rule-name> checked; (the current implementation explic-
reject <control-rule-name> itly and redundantly copies the justifications
case <case-step-name> of the past case step into the new decision
function <function-call> node);
why-user <function-call> function, why-user: the function is called with

the arguments updated to the new context.

Figure 7.14: Reusing the justifications at the why-slots

140 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

When the justifications are valid in the new context the choice is returned to the
problem solving stepping function that proceeds exploring an equivalent reasoning
path to the guiding cases. When a justification is not valid in the new context, the
validation procedure either tries to pursue a different case or returns nil, i.e., no past
choice is supported by its justifications in the new problem solving context.

7.2.3 Advancing the cases

When the transfer occurs from a past guiding case to the new problem solving episode
the past guiding cases are advanced to their new possible steps. In principle only one
guiding case should be advanced, namely the one from which the transfer effectively
occurred. However it is often the situation that the guiding cases share some common
steps and therefore the algorithm advances all the cases that share the transferred
guiding step. Figure 7.15 shows the algorithm to accomplish this move forward in
the guiding cases.

Chapter 5 showed how a case is indexed by all the sets of interacting goals and
chapter 6 presented how a case is retrieved for any of those sets to cover a new set of
goals. The subgoaling structure is used to identify the steps of the case that are in
use and can potentially be useful in the reconstruction process.

Definition 11 Potentially useful step of a guiding case:
A step of a guiding case is a potentially useful step, iff the step is in the sub-

goaling structure of any of the goals covered by the guiding case.

Step 4 of the procedu e Advance-Case in Figure 7.15 determines whether i goal
node is a potentially useful step by determining whether the goal is in the subgoaling
chain of any of the covered goals. Similarly step 9 checks finds that an operator node
is a potentially useful step, if it is relevant to some potentially useful goal. Finally
step 13 settles that an applied operator node is potentially useful if the operator node
where it was chosen at, was found useful. The procedure follows recursively a case
until it finds a potentially useful step. If no such step is found and the case is advanced
unsuccessfully until its last step, step 17 declares that the case is abandoned, i.e., the
case is removed from the set of active cases for the current active search path.

Failing and backtracking

The analogical problem solver may still encounter failures due to some goal interac-
tions not previously experienced and therefore unguided, or due to the partial match
between the new and past situations. The backtracking algorithm finds the search

7.2. THE REPLAY ALGORITHM 141

Input : The set of gaidinag-caea and the current gaiding..csee.
Output : The set of gaiding-.casea with the pointers to the candidate next steps.

procedure Advance-All-Cases (guiding-case, guiding-cases)
1. current-used.step ,- CurrentCaseStep (guiding-case)
2. Advance-Case (current-used.step, guiding-case)
3. foreach case E (guiding-cases \ {guidingcase})
4. active.case.step - CurrentCaseStep (case)
5. if choice (current.used.step) = choice (active.case.step)
6. then Advance-Case (active-case.step, case)

procedure Advance-Case (current-step, guiding-case)
1. nextcurrent-step -- Next-Case.Step (current-step, guiding-case)
2. covered-goals +- Goals_-Covered.byCase (guiding-case)
3. case next-current-step
4. goal-decision-node
5. if IsinS ubgoalingChain (next-current-step, covered-goals)
6. then CurrentLCaseStep +- next.current-step
7. else Advance-Case (next-current-step, guiding-case)
8. chosen-operator-node
9 if IsRelevantTo (next-current-step, covered-goals)
10. then CurrentCase-Step 4- next-currenLstep
11. else Advance-Case (next.current-step, guiding-case)
12. applied-operator-node
13. if IsRelevant-To (chosen-at (nexLcurrent-step), covered-goals)
14. then Current-Case-Step 4- next-current.step
15. else Advance-Case (next.current.step, guiding-case)
16. otherwise ;case was advanced to the end
17. CaseAbdandoned (guiding-case)

Figure 7.15: Advancing the guiding cases to the next potentially useful steps

nodes with alternative choices. Due to the recording of the failures as justifications
at the case nodes, the branching factor on the number of possible alternatives is dras-
tically reduced by the past validated failures. When a new choice point is found, the
pointers to the transferable steps of the guiding cases are updated and set back to
the new problem solving state from which the search proceeds.

142 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

7.3 Examples

This section presents some examples that illustrate some aspects of the replay proce-
dure (other examples can be found in [Veloso and Carbonell, 1992a]), including the
reuse of the subgoaling structure, of the record of failures, and of the justifications at
the why-slots; and the exploratory merging of guiding cases.

Following one case - the subgoaling structure and failures

Figure 7.16 illustrates how the subgoaling structure and the failure records at a stored
case can help guiding the reconstruction process for a similar new problem. First let
me introduce the basic representation used in the figure. The left side of Figure 7.16
shows a sequence of nodes named cnl through cn2l that correspond to a past stored
case. The sequence of nodes, ni,... n21, on the right side of Figure 7.16 represents the
new problem solving episode. Both sequences represent successful search paths. The
arrows across the nodes show the transfer occurred from the nodes of the past case
into the new situation.

The past case was stored with instances generalized to variables of the same class
as presented in chapter 5. When the case is retrieved as similar to a new situation,
the partial match found between the old and new situations defines partial bind-
ings to the variablized past case. The past generalized problem involved moving an
object <ob9> from the post office, <po35>, at some city, to an airport, <apl7>, at
a different city. In the past initial state there is a truck <tr35> at the post office
<po35>, and an airplane <p13> at the airport <apl7>. Formally the relevant past ini-
tial state is: (alt-obj <ob9> <po35>) (at-truck <tr35> <po3 5>) (at-airplane
<p13> <apl7>) (same-city <po 3 5 > <ap35>). The goal statement is the simple
goal (at-obj <ob9> <apl7>).

Assume that this case is retrieved to guide a new problem where an object obO
is also to be moved from a post office p0 to an airport a2 at a different city. In this
new initial state however a truck trO is at the airport aO and there is an airplane
plo also at ao. Formally the initial state is: (at-obj obO p0) (at-truck trO aO)
(at-airplane plO aO) (same-city p0 aO), and the goal statement is: (at-obj
obo a2). The retrieval procedure returns the substitution ((<ob9> . obO), (<po35>

pO), (<ap35> . aO), (<apl7> . a2)) as a partial match between that past
case and the new situation. Note that neither the truck <tr35> nor the airplane
<p13> get bindings from this partial match. However the replay mechanism fur-
ther assigns bindings as the match between the two situations becomes clearer along
the reconstruction. The case is further instantiated with the substitutions (<tr35>

7.3. EXAMPLES 143
cml (at-.obj obo a2) xii (at-.obj oLe, a2)

:precond-of cnO :precond-of nO

cxi2 (unload-airplane obO plO a2) n2 (unload-airplane obO plO a2)
relevant-to cxii relevant-to nIi
:sibling-op. ((unload-truck obO <tr77> &2) :.iblixig-ops ((unload-truck obO tr2 &2)

(goal-loop (at-obj obO &2))) (not-triedj))

cn3 (inside-airplane obO plO) --------_0 Fn3 (inside-airplane obO plO)
:precond-of cxi2 I precoxid-of n2

cxi4 (load-airplane obO plO &0) n4 (load-airplane obO p10 aG)
:relevant-to cn3 :relevant-to n3

ai5 (tojobO aG) -------_ x5 (at-.obj obo AO)

-precoxidof cxi4 :rcn fn

cxi6 (unload-truck obO trO a0) ni6 (unload-truck obO trO aG)
relevant-to cn5 xlvn-on
:sibling-op. ((unload-airplane obO plO &0)

(goal-loop (inside-airplane obO plO)))

cn7 (inside-truck obo trO) F7 (inside-truck obO trO)
:precond-of cn6 :precond-of n6

en8 (load-truck obO trO p0) n8(load-truck obO tr0 p0)
relevant-to cxi? rrelevant- to n7

cn9 LOADT-RUK ob trOpO)n9 (at-truck trO pO)
LOADTRUC ob trOp0)precond-of n8

cniO (at-truck trO a0)I
niO (drive-truck tro a0 pa)

preco~of n6 -- r -I Irelevant-to n9

calli (drive-truck trO PO aG)
relevant-to cxiIO nlu (DRIVE-TRUC K trO aO p0)

cxil2 (DRIVE-TRUCK trO p0 aO) * n12 (LOAD-TRUCK obO trO p0)

cnl3 (UNLOAD-TRUCK obO trO .0) 1i3 (at-truck trO aO)
:precond-of n6

cxii4 (at-airplane plO aO)n1(dietukrop 0
:precnd-ofcn: elevant-to n13

=1i5 (fly-airplane plo a2 a0)
xrelevant-to cn1i4 ni5 (DRIVE-TRUC K trO p0 aO)

cni6 (FLY-AIRPLANE plO a2 aO) Fn16 (UNLOAD-TRUCK obO trO aO)

cxi17 (LOAD-AIRPLANE obO plO a0) J-n17 (LOAD-AIRPLANE obO plO nO)

eMS8 (at-airplane plO a2) ---- 18 (at-airplane plO a2)
:precoxid-of cxi2 :precoxid-of n2'

enI9 (iffy-airplane plO aO a2) Fn19 (fly-airplane plO aG a2)
relevant-to exIlS :elevant-to xIi8

cn2O (FLY-AIRPLANE plO aO a2) Fx20 (FLY-AIRPLANE 10O aG 2)

cxi2l UNLOAD-AIRPLANE obo plO &2) Fn21 (UNLOAD-AIRPLANE obO plO a2)

Figure 7.16: Following one case -Subgoaling structure and failures

144 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

. trO) and (<p13> . pl0) that occur dynamically at transfer time as discussed
earlier.

The same goal is chosen at the node nl as it was at node cnl. At node cn2
the past case records that the operator (unload-airplane obO <p13> a2) was suc-
cessfully chosen and that the operator (unload-truck obO <tr77> a2) failed. This
information guides the decision at node n2 of choosing (also successfully as realized
in the sequence) the relevant operator (unload-airplane obO plO a2) instead of
(unload-truck obO tr2 a2). The substitution (<p13> . plo) is set and applied
to the case. The transfer continues interleaving the choices of goals and relevant
operators in the same subgoaling chains. At node cn6 the alternative choice of
(unload-airplane obO plo aO) is pruned from the new case, because the justi-
fication for failure in the past, namely the goal-loop of the goal (inside-airplane
obO plO), also holds. This goal is chosen in this search path, namely at node n3, and
is not achieved yet at the current node n6.

As noticed above, the problems diverge in the location of the truck and airplane.
In fact at node cn9, the past decision of loading the truck at the post office cannot
now be immediately transferred as the operator (load-truck obO trO p0) is not
applicable in the new problem. The new solution diverges then from the past case
at nodes n9, nl0, and nil, where the conditions for applying that operator are set,
namely by driving the truck tro from the airport aO to the post office p0. The past
case is stopped at the node cn9. The past decision is tested at each new step to see
whether it is justified. This happens at node n12 where the transfer continues. A
somehow symmetric situation occurs when, at the node cnl4, the goal (at-airplane
plO aO) is not a pending goal in the new problem, as the airplane was initially already
at the airport aO. In this situation, the past case is advanced and the steps in the
subgoaling structure of that goal are skipped. The transfer is pursued at node cnl7
and the reconstruction process terminates successfully.

Following multiple cases - reuse of justifications

Figure 7.17 shows a reconstruction process guided by two past cases. The new situ-
ation is shown at the center of the figure and the two past guiding cases on its left
and right. The new problem to be solved consists of a two-goal conjunct, namely to
load an object ob4 into a truck tr9 and to load another object ob2 into an airplane
p17. The goal conjunct is (and (inside-truck ob4 tr9) (inside-airplane ob2
p117)). The literals (at-obj ob4 p5) (inside-truck ob2 tr9) (at-airplane
p17 all) are in the new initial state.

The case represented on the left corresponds to a situation where an object was
also to be loaded into a truck. However this truck was at the airport of the city and

7.3. EXAMPLES 145

not at the post office. The case represented on the right corresponds to a past solved
problem where an object is to be loaded into an airplane and the object is already at
the airport.

The transfer occurs by interleaving the two guiding cases and performing any
additional work needed to accomplish remaining subgoals. In particular, the case
nodes cn3 through cnS of the left case were not reused, as there is a truck already at
the post office in the new problem. On the other hand, the nodes n3-4 and n8- 11
correspond to unguided additional planning work done in the new case.

I I (inaide-airplanet ob2 p17) 111 (inaide-airplanet ob2 pl7)

n:precond-of mO-user Precond-of cmo-useer

n2 (load-airplane, ob2 p17 &&) [.i(oad-airplane obip17as6)

11 relevant-to al a

m3 (at-obj ob2 a8) 3m (at-airplane p17 ag)
:precond-of n2 :precond-of cz2

n4 (unload-truck ob3 trG a&) m4 (4v-a~irplane p17 <apQl> a5)

:relevamI-to n3 -relevant-to cn3
:why-this-op (select bindings fly-direct)

cnl (inside-truck ob,4 trg) ml(inside-truck ob4 tr9)

:precomd-of cmO-user :precond-of mo-user FcuS (FLY-AIRPLANE p17 all a0)

cm2 (load-truck ob4 tuG p8l) n (load-truck ob4 trO p5 cmS (LOAD-AIRP LANE ob2 pl7 a5)

ýsibliagop* ((load-truck ob4 tuB <ap?>) why-this-op (ease case-*xl.2)

(gosil~oop (inside-track ob4 trg)))

moT (LOAD-TRUCK ob4 tuG pS)
cm3 (at-truck tuG p$)

:precond-of cn2 ri$ (at-truck tr9as

:precond-of n4S
c4 (drive-truck tr9 <ap7> p5)

.rlvntocm ng (drive-truek tuG p5 all)

:relevant-to "tS

cnl (DRIVE-TRUCK trG <ap7> p

mil(~VE-TRUCK trG p
5

a)

emS6 (LOAD-TRUCK ob4 trG p5)

nil1 (UNLOAD-TRUCK ob2tGa)

1u2 (at-aIrplane p17 all)

:precond-of n2

m13 (fly-airplane p17 all a5)

:relevant-to n12

a.14 (FLY-AIRPLANE p17 al I o) --

mIns (LOAD-AIRPLANE ob2 plYj a 0S i

Figure 7.17: Following multiple cases - Merging during derivational replay

146 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

Also notice that, at node n6, the replay mechanism prunes out an alternative
pssible suitable operator, namely to load the truck at any airport, because of the
recorded past failure at the node cn2 from the left case. The recorded reason for that
failure, namely a goal-loop with the (inside-truck ob4 tr9), holds again in the
new situation, as that goal is in the current set of open goals, at node ni. Record
of past failures therefore help pruning alternatives ahead. Node n6 is annotated with
the justification that the decision is made by following the case that solved problem
exi denominated case-exl-2. When the new case is reused, case-exl-2 may be
inspected, if needed, to trace back the justifications that dictated the choice.

The subgoaling structure stored at the past cases defines which case should be
followed next. When there is nothing specifying which case to follow, the replay
mechanism randomly decides on the case to pursue. This randomness occurs in a small
percentage of the decisions as most of them are guided by the justifications stored in
particular by the subgoaling chaining. The experiments run show interestingly that
the random behavior allows innovative merging of past cases leading to solutions of
a better quality in several situations (see chapter 8, section 8.2.5).

To illustrate in addition the reuse of a justification at an why- slot, notice the
transfer from node cn4 of the case on the right that solved problem ex2, to the
new node n13. The past decision node cn4 is annotated with the justification
:why-this-op (select bindings fly-direct) for the reason why this operator
was chosen. fly-direct refers to the name of a control rule that binds the source
airport of the operator FLY-AIRPLANE to the airport where the airplane is currently
at. Hence, when an airplane is needed at some airport, it flies directly from the air-
port where it is to the airport destination without flying through any intermediate
location. A sketch of this control rule is the following:

(CONTROL-RULE FLY-DIRECT
(<airplane> <destination-airport> <source-airport>)
(preconds

(and (current-op-p 'FLY-AIRPLANE)
(current-goal (at-airplane <airplane> <destination-airport>))
(true-in-state (at-airplane <airplane> <source-airport>))))

(effects (select bindings ((<loc-from> . <source-airport>)))))

When the replay procedure tries to get guidance from the node cn4 to the new
situation, it finds that the source airport is not bound by the partial bindings returned
by the retrieval procedure. Using the justification annotated, the replay mechanism
sets the source airport to all as shown at n13. This binding is obtained by attempting
to validate the justification, as the control rule proposed holds due to the fact that
(at-airplane p17 all) is true in the current new state. This binding information

7.4. FEEDBACK FROM THE PROBLEM SOLVER TO MEMORY 147

could equivalently have been provided by an external user by using the why-user slot,
or could be obtained by the bindings returned by the retrieval procedure. The why-
slots may also be used to provide information on particular goal, operator, or binding
selections to increase the quality of the plans produced by the problem solver.

7.4 Feedback from the problem solver to memory

After the analogical problem solver finds a solution to a new problem directed by
the retrieved similar past cases, it can evaluate the utility of the guidance provided
by those past cases. In general the analogical problem solver acts as a tester of
the accuracy of the similarity metric that dictated the selection of the particular
set of guiding cases. This section presents a simple way of improving the similarity
metric among problems based on a rudimentary feedback from the analogical problem
solver on the utility of the guiding cases retrieved. This elementary technique was
developed mostly for the purpose of demonstrating that the problem solver has access
to enough knowledge from which to reason about the utility of the guidance. The
approach, even if elementary, presents the novelty that the problem solver may act
automatically as a tester and learner of the similarity metric. I find an interesting
future work direction (see chapter 10) to explore more sophisticated techniques to
incrementally learn an accurate similarity metric based on the feedback given by the
problem solver. In a nutshell the supporting method for the closed-loop approach
proposed in this work consists of allowing the analogical problem solver to supply
feedback on the relative relevance of the literals of the initial state with respect to
the goals that they contribute to achieve.

7.4.1 The method explored

At retrieval time, the new problem is described by a goal statement and an initial
state. As the problem solver did not solve the problem yet, it does not know which
features of the initial state will be relevant, i.e., foot-printed, to solving the problem,
i.e., to achieving the goal statement. On the other hand the cases stored in the case
library against whom the retriever compares the new problem, are indexed through
the foot-printed initial state. However not all the features in the foot-printed initial
state may be equally relevant in terms of the search effort invested in solving the
corresponding achieved goals. This is why the foot-printed initial state that indexes
the cases is organized in a discrimination tree. This structure captures different levels
of relevance by their depth with respect to the root of the tree. Chapter 5 presented
the formal procedure to organize the case library. In a nutshell the insertion of a new

148 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

case into the discrimination network conforms a particular order of relevance, stored
in the variable *relevance-bias* at each network. The problem solver changes this
bias according to the utility of the guidance at replay time, and the discrimination
network is reorganized when this bias changes.

7.4.2 Illustrative example

Figure 7.18 shows a problem where an object obl must be located at an airport a7
and is initially inside of a truck tr5 which is at the airport a7.

(has-instances (state (and (goal
(OBJECT obi) (inside-truck obl tr6) (at-obj obi a7))
(TRUCK trs) (at-truck tr5 a7)
(AIRPLANE p13) (at-airplane p13 a7)
(AIRPORT a7) (same-city a7 p7)))
(POST-OFFICE p7)
(CITY c7))

(a) (b) (c)
Figure 7.18: An example problem - in-truck: (a) class distribution of instances, (b) initial

state, (c) goal statement

Suppose that there is a case in the case library, say case-in-airplane, as shown
in Figure 7.19, where an object must also be located at an airport, as indicated by
the goal (at-obj <ob23> <a35>). As this case was previously solved it is indexed
by the foot-printed initial state that shows that the two relevant literals to achieve
the goal are both that the object is inside of an airplane, (inside-airplane <ob23>
<pl 4 4 >), and that the location of the airplane is at the airport destination, i.e.,
(at-airplane <p144> <a35>).

class of variables: (foot-printed-initial-state (goal
(OBJECT <ob23>) (and (at-obj <ob23> <a35>))
(TRUCK <trSl>) (inside-airplane <ob23> <p144>)
(AIRPLANE <pl 4 4>) (at-airplane <p144> <a35>)))
(AIRPORT <a36>)
(POST-OFFICE <p35>)
(CITY <c36>)

(a) (b) (c)

Figure 7.19: An example case - in-airplane: (a) class of variables, (b) foot-printed initial
state, (c) goal statement

Consider that the initial relevance bias known by the retriever weighs equally all
the literals, ioe.,

7.5. SUMMARY 149

:relevance-bias
((at-truck . 0) (at-airplane . 0) (inside-truck . 0)
(inside-airplane . 0) (at-obj . 0)).

The retriever returns the case-in-airplane as a similar past-case under the
substitution ((<ob23> . obl) (<a35> . a7) (<p144> . p13)) for which the
match is partial as the initial state of the new problem only matches one literal of
the past case, namely (at-airplane <p144> <a35>) corresponding to the literal
(at-airplane p13 a7) in the new initial state. The literal (inside-truck ob1
tr5) has one of its arguments matching a past variable, namely obl is matched to
<ob23>.

When replaying the past case, the analogical problem solver finds the guiding
case not useful, as in the past case the operator chosen and applied is simply to
unload the airplane. This choice fails in the new problem, because a goal loop is
encountered when trying to put the object at the airplane again in order to load
it into the airplane. Based on this fact the analogical problem solver returns to
memory that the guidance was not useful which is interpreted as weighing as more
relevant the difference between the past case and the new problem. Only the two lit-
erals (at-airplane p13 a7) and (inside-truck obi tr5) partially matched the
past foot-printed initial state. The foot-printed literal (inside-airplane <ob23>
<p144>) was not matched. As the case was not found useful, the difference between
inside-truck and inside-airplane is found more relevant, than what is in com-
mon, namely at-airplane. The new relevance-bias becomes:

:relevance-bias
((inside-truck . 1) (inside-airplane . 1) (at-airplane . 0)
(at-truck . 0) (at-obj . 0)).

The relative relevance of the other literals to each other will be incrementally
learned through experience.

It is clear that, in general, deciding whether a guiding case is useful to the con-
struction of a solution to a new problem situation is more complex than illustrated
in the example above. It is a very challenging direction for future work to define
the criteria for usefulness and in particular to try to automate the learning of this
decision. In this work, I used a fixed preestablished threshold on the fraction of a
guiding case that is successfully transferred.

7.5 Summary

This chapter presented the replay mechanism. It motivates the problem and describes
the approach developed. The replay algorithm is formally stated as an extension to

150 CHAPTER 7. AUTOMATIC UTILIZATION OF CASES

the base-level problem solver. It involves a complete reinterpretation of the justifi-
cations structures in the new problem solving context, as well as the development of
appropriate actions to be taken when transformed justifications are no longer valid.

The base-level problem solver alternates between generating alternatives to solve
a problem and searching the space created by these alternatives. In contrast, the
analogical reasoner tests previous alternatives, attempting to pursue the successful
ones. The branching factor of the search space may also be reduced when the replay
mechanism validates previous failures and prunes them from the new search space.

The replay mechanism can integrate guidance from multiple past similar cases.
The chapter also discusses different merging strategies.

Chapter 8

Empirical Results - Diversity and
Scaling Up

How does the overall system perform ?

The previous chapters described the design and implementation of a complete
problem solver which integrates reasoning from first principles (domain theory) and
analogical reasoning from accumulated episodic experience (cases, i.e., derivational
traces). I proposed and achieved the integral implementation to provide comparative
empirical evidence evaluating the utility of recycling and organizing past experience
in the derivational analogy framework. Furthermore, at the time this research was
initiated, there had never been a comprehensive empirical evaluation of a complete
analogical reasoner automatically generating, storing, retrieving, and replaying mul-
tiple cases in a large case library.1 Hence it became rather challenging to scale up the
system by testing the performance of the algorithms designed in a large case library
for a complex domain task.

This chapter presents the empirical results obtained from running the system in
a diversity of domains including a complex logistics transportation domain with a
growing case library of more than 1000 cases in it. The chapter is organized in five
sections. The methodology I followed in this thesis was to build the full system in-
crementally by designing and developing one by one each of its functional modules.
The first section shows results acquired in different stages of this incremental pro-
cess. They illustrate specific aspects of the approach, including the diversity of tasks
that the system can address, the reduction in problem solving search time, and the

'[Golding, 19911 is a recent thesis that applied case-based and rule-based reasoning to problem
solving. The thesis was tested for the task of name pronunciation with a case library of 5000 names.
See chapter 9 for additional comparisons.

151

152 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

sensitivity to two different similarity metrics. The following sections show empirical
results on the performance of the full system in the logistics transportation domain.
Section 2 motivates the scaling up process, introduces the domain, and presents how
the experiments were conducted. Section 3 shows a variety of results demonstrating
that the integrated analogical problem solver performs significantly better than the
base level problem solver along various dimensions. The results include the demon-
stration of a significant increase in the solvability horizon of the problem solver and
of high positive transfer reducing significantly the combined memory retrieval and
problem solving times. Section 4 summarizes and discusses the results.

8.1 Diversity of tasks

The algorithms designed and developed are completely domain independent, meaning
that the integrated analogical problem solver can be applied to any domain for which
the problem solving task can be encoded in NOLIMIT's representation language.2

The system has been applied to several domains along its development. Figure 8.1
gives a perspective of the domains tested. It also indicates the stage of the system
development when the domain was introduced.

This section shows empirical results obtained from experiments in the ONE- WA Y
rocket domain, and in the extended-STRIPS and machine-shop scheduling domains.
[Carbonell and Veloso, 1988] shows the initial version of the justification structures
applied to the matrix manipulation domain to accomplish Gaussian elimination. The
next section presents results from the logistics transportation domain.

8.1.1 The ONE- WAY rocket domain

The ONE-WAY rocket domain was introduced in section 3.4 (see Figure 3.3). Con-
sider the problem introduced in Figure 3.4, section 3.4, to illustrate briefly the deriva-
tional replay process and its reduction in search time.

Figure 8.2 shows the results obtained when solving the problems of moving two,
three, and four objects from locA into locB by base level search and by analogy.

First, each of the problems is solved by base level search. The column labeled
"Base Search" in Figure 8.2 shows the average running times obtained by running
NoLIMIT without analogy in the two- (2objs), thiree- (3objs), and four-object (4objs)

2This is equivalent to PRODIGY2.0's description language [Minton et al., 19891 with some syntactic
modifications and an additional class hierarchy for the entities in the domain. PRODIGY4.0 follows
also NoLIMIT's extended representation arnd its complete specification is in [Carbonell el at, 19921.

8.1. DIVERSITY OF TASKS 153

Domain description Development stage Cases
Matrix manipulation: This e Initial generation of the justification 4 - 5
domain consists of several op- structures at the decisions nodes;
erations on matrices to perform * Initial design of the memory model.
Ca(Imuian eliminatiAn__
ONE-WAY rocket: Simple e Nonlinear problem solving as full in- 5 - 10
transportation domain where ob- terleaving of goals;
jects can be moved among two lo- e Initial replay mechanism, guidance
cations in rockets that move only from a single case
in pnp direction_

Extended STRIPS and Ma- * Analysis of similarity metrics; 100
chine-shop scheduling: Tra- * Retrieval from a linearly organized
ditional domains [Minton et al., case library;
19891 * Replay of single cases.
Logistics transportation: In * Scaling up; Advanced memory orga- > 1000
this domain packages move in nization;
trucks and airplanes among loca- e Complete indexing of cases;
tions from different cities. * Incremental retrieval;

le Replay of multiple cases.

Figure 8.1: A perspective on the diversity of tasks and the stage of the framework in which
they were introduced

problems, respectively. The system generates cases from the derivational traces of
the solutions to each of these problems.

Then the analogical problem solver is tested on solving new problems consisting
of moving two, three, and four objects, guided by each one of the accumulated cases.

Replayed cases
New Base Case Case Case

Prob Search 2objs 3objs 4objs

2objs I 4.5s 2s 2s 2s

3objs I 14.75s 4.75s 3.25s 3.25s
4objs 117.5s 7.75s 7.75s 5.75s

Figure 8.2: Results in a simple transportation domain

The rest of the table in Figure 8.2 shows the replaying time for the six possible
"Ombinations. For example, the analogical reasoner takes 4.75 seconds solving the
3objs problem by analogy with the 2objs problem. The diagonal values, i.e., the

154 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

k-objs problem replaying the k-objs problem (with k=2,3,4), correspond to the sit-
uations where the new problem is structurally the same as the guiding case. They
differ in respect to variable instantiation. For example, this means that the 2objs
problem solved previously involves moving objects obj-x and obj-y, and the new
2objs problem involves moving two other objects, say obj-w and obj-z. For these
situations the analogical reasoner gets guidance for all its decision points and does
not have to perform any additional planning.

The solution is replayed whenever the same step is a possible step and the justi-
fications hold. For example, in using the two-object case as guidance to the three-
(or four-) object problem, the failure justification for moving the rocket, namely
no-relevant-ops (at ROCKET locA), is tested and this step is not replayed until
all the objects are loaded into the rocket. The improvements obtained are high as the
new cases are extensions of the previous cases used for guidance. Maximal improve-
ment is achieved when the case and the new problem differ substantially (two-objects
and four-objects respectively).

These results also show that it is better to approach a complicated problem, like
the four-object problem, by first generating automatically a reduced problem [Polya,
1945], such as the two-object problem, then gain insight solving the reduced problem
from scratch (i.e., build a reference case), and finally solve the original four-object
problem by analogy with the simpler problem. The running time of this 2-step process
still adds up to less than trying to solve the extended problem directly, without analog
for guidance: 4.5 s + 7.75 s = 12.25 seconds, for solving the two-object from scratch
(4.5 s) + derivational replay of the two-object for the four-object problem (7.75 s)
versus 117.5 seconds for solving the four-object problem from scratch.

Notice that whereas this thesis implements the nonlinear problem solver, the case
generation module, and the analogical replay engine, it does not yet address the
equally interesting problem of automated generation of simpler problems for the pur-
pose of gaining relevant experience. That is, PRODIGY/ANALOGY will exploit suc-
cessfully the presence of simpler problems via derivational analogy, but cannot create
them as yet.

8.1.2 The extended-STRIPS and machine-shop scheduling do-
mains

These two domains are substantially more complicated than the one-way rocket one.
The results show the sensitivity of the benefits of the replay as a function of two
different similarity metrics.

A first experiment the direct similarity metric uses to evaluate the partial match
between problems, not considering therefore any relevant correlations between the

8.1. DIVERSITY OF TASKS 155

initial states and the goal statements.
NoLIMIT without analogy ran over a set of problems in the extended-STRIPS and

in the machine-shop scheduling domains.' A library of cases was accumulated from
the derivational traces of the search episodes of solving this set of problems. In order to
factor away other issues in memory organization, the case library was simply organized
as a linear list of cases. Then the same set of problems was solved by derivational
analogy using a same-out testing strategy, in which the retrieval module does not
return the exact same problem if it is present in the case library. As the problems
are randomly generated and independent from each other, the same-out strategy is
equivalent to training the system with a randomly generated set of problems and then
testing the system with a different randomly generated one.

Figures 8.3 (a) and (b) show the results obtained from a set of 40 problems in
the machine-shop scheduling, and from a set of 45 problems in the extended-STRIPS
robot planning domains, respectively.

The graphs plot the cumulative number of nodes searched. The dashed curves
represent the initial runs without analogy using NoLIMIT's base-level search algo-
rithm. The dotted curves represent the number of nodes searched while following
the guidance of cases found similar using the direct similarity metric. These dotted
curves show that analogy achieved an improvement over base search (dashed curves):
a factor of 1.5 fold-up for the machine-shop scheduling domain and 2.0 fold-up for the
extended-STRIPS domain. In general the direct similarity metric lead to acceptable
results. However a closer analysis of analogical problem solving episodes shows that
the straightforward similarity metric does not always provide the best guidance when
there are several conjuncts in the goal statement.

The problem of matching conjunctive goals turns out to be rather complex. As
conjunctive goals may interact, it is not at all clear to decide that problems are more
similar based simply on the number of literals that match the initial state and the
goal statements. The foot-print similarity metric refines the account of the relevance
of the literals of the initial state with respect to their contribution to achieving each
goal conjunct (see chap:retrieval).

I ran new experiments using the global foot-print similarity metric in the extended-
STRIPS and machine-shop scheduling domains. The solid curves in Figures 8.3 (a)
and (b) show the results for these two domains using the global foot-print similarity
metric. These new results show an improvement of the analogical reasoner over
base search of a factor of 2.0 fold-up for the machine-shop scheduling and scheduling
domain and 2.6 fold-up for the extended-STRIPS domain. The curves obtained do not
represent the best improvement expected, as the set of forty problems used does not
completely cover the full range of problems in either domain.

3This set is a sampled subset of the original set used by [Minton, 1988].

156 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

10 -a-- 0 NoUmrt
x4 . direct similar it14M -foot-print similarity /

1200 /

am3

400

0 1I
I I I

5 10 15 20 25 30 35 40
Number of Problems

(a) Machine-shop Scheduling Domain

- m NoLim itx- - 4- direct s imilarity)
2 O - foot-print similarity/ism-

5 10 s20 25 30 35 40 45
Number of Problems

(b) Extended-STRIPS Domain

Figure 8.3: Comparison between the number of nodes searched with NoLIMIT's base-level
search algorithm and with the analogical reasoner following the guidance of cases found
similar according to two different similarity metrics

8.2 The logistics transportation domain

To scale up the system in both the size and diversity of domains, I build a 1000-case
library in a complex logistics transportation domain, as used in the examples in the
previous chapters. In this domain, packages are to be moved among different cities.
Packages are carried within the same city in trucks and across cities in airplanes. In
the domain version used in the experiments (see appendix A), the trucks and the

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 157

airplanes do not have limited capacity, as they do in more recent extensions of the
model. At each city there are several locations, e.g. post offices and airports. This
transportation domain represents scale up in both the length of the solution and
the size of the search space over the other domains described above in the previous
sections.

The empirical tests with this large case library demonstrate the scaling properties
of the memory organization, of the match/retrieval process, and of the reconstruction
mechanism replaying multiple cases.

8.2.1 Generation of problems

To generate such a large collection of problems, I implemented tools to automatically
create problems of different complexity in this domain. The user specifies the static
information, namely the number of cities, and locations within the city, i.e., post
offices and airports. The generator prompts the user for a maximum number of
trucks, airplanes, and packages. It randomly selects subsets of the packages and the
carriers provided. It then randomly assigns the initial locations for all these entities.
At this generation level the complexity of the problem is controlled by the size of
the initial world configuration as well as by the number of goal conjuncts in the goal
statement. This number is also specified by the user. Figure 8.4 shows the trace of
the generation dialogue and Figure 8Z5 shows the actual set of problems created. The
literals in the initial state shared by all the problems in the same set are stored in
the variable *state-common-set*.

<cl> (create-probset)
There are 15 cities, each with 1 post office
and 1 airport.

Enter the specifications for a new set of problems:

Enter problem set filename: set-new-3
lumber of problems in this set? 3
Prefix for name of problems? new-3
lumber of goals per problem? 5
Maximum number of packages? 30
Maxi-mu number of trucks? (additional to 15) 20
Maximum number of planes? 15

nil
<cl>

Figure 8.4: Dialogue for the generation of a set of problems

158 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

("Osf lnstances-commoa-seS* (inaidewairplasto a60 plO) (at-obj obi po4)
(has-instances CITY (aS-obj .62 pas) (at-airplane plO a8)

cO ci c2 c3 cl cS c4 c7 ci (as-aisplano pit .10) (as-aiuplan. p12 all)
ct dIO c~l c12 c13 C14 CIS) (as-airplame p13 a15) (at-airplane, p14 &14)

(has-instances, POST-OFFICE (&S-airplane pIS s0) (a*.airpl~ae p16 a12)))
p.o p.1 p.2 p.3 p.4 pas poG p.

7
po6

p.o polo poll po12 p.13 p.14 pals) (goal (and
(haa~iustanco9 AIRPORT (inside-truack .62 tr2o) (inside-truck @60 Sri?)

.0 &I .2 .3 &4 .5 &6 a? .8 (at-truck trS pas) (iaside-airpl~aneobi pis)
at &10 all .12 &13 .14 &IS) (&A-truck WSr p.7)))

(kae-inaatacee TRUCK
$ti Sri S,2 r Sr4 SrI it6 Ird r it$
W9 trio still tr12 W3i Sill Iris)

(PROBLEM new-3-I
(has-instsance. OBJECT

(sef sta.~~mmm~e '((state (and .60 obi ob2 @hS .64 obS b64 ob? @68 obS .610
(as-suck two p.0) (&s-Suck Sri poi) obli ob12 ob13 obi4 obIS .b61 .617 oblS .619)
(as-truck tr2 .2) (as-truck Wr &3) (has-instsaces TRUCK trio Sri? tri8 W9i %r2O)
(&t-Struck tr4 p.4) (s4-truck irs aS) (hao-inesaaces AIRPLANE plO p11 p12 p13 p14 PIS)
(as-truck "i pod) (as-Stuck Sr? p.?)
(as-truck Sit po6) (&%-truck sr9 p.0) (stat. (and
(as-truck trio pol0) (&&-track tIll pail) (at-truck triO a8) (at-truck 5,17 po0)
(as-truck W,2 &12) (&t-truck W3i p.13) (aS-tuack Srio all) (at-truck trill a7)
(at-Suck till p.14) (a6s-ruck 5,15 &15) (a&-truck tr20 pals) (part-of triO c8)
(part-o ISO cO) (boc-at Poo co) (boc-aS .0 CO) (pail-of SWi c9) (part-of tri$ cii)
(asamo-city Poo .0) (same-city .0 POO) (paut.of tri c7) (part-of Ir20 ciS)
(pa~rs-of Sri ci) (loc-&S p.1 ci) (boc-4at .1cl) (inside-truck obO SrI) (iasid*.airpl~aa @61 PIS)
(same-city p.1 aI) (saxue-city &1 p.1) (inside-aiplan. o62 p12) (at-obj .63 p.3)
(pan-~of- sr2 c2) (loc.&S p92 c2) (boc-aS .2 c2) (inside-airplane ob4 pit) (inside-airplastob @5PIS)
(same-city p.2.&2) (same-city .2 p.2) (inside-aiplan. @b6 p15) (inside-truck W6 trio)
(pan-~of sr3 c3) (loc-aS p.3 c3) (boc-at .3 c3) (inside-arplane @68 p11) (as-obj .69 pol)
(same-city po3 .3) (same-city .3 po3) (inside-truck @610 SrI) (&Atobi obli &IS)
(part.of Sr4 c4) (loc-at p.4 c4) (loc.&S .4 c4) (at-ohi @612 .9) (at-obj @613 a13)
(same-city p.4 a4) (same-city .4 p.4) (at-obj @b14 poll) (inside-truck @615 tr3)
(part-of Irb g5) (loc-at p.5 cS) (loc.at as CS) (inaide-truck oblgt rI) (at.obj @61? a6)
("ame-city Pas &5) (same-city as p.5) (as.061 @b61&6) (inside-truck ohi9 "r)
(pass-of "r C6) (loc-at Pas c6) (loc.&&aS C6) (a.S-irplane plO all) (as-airplane pi1 as)
(same-city p.6 as) (same-city 46 poE) (at-airplaneo p12 .4) (as-airplane p13 a4)
(pars-of Sr? c?) (loC-at p.? cT) (boc-at a? c?) (at-airplane p14 .10) (aS-airplane pis .2)))
(swame-city p.? a7) (same-city &7 p.7)
(part-of Isi cS) (loc-&t p.6 cS) (loc-at .8 co) (goal (and
(same-city Poo as) (s&amecity as Poo) (inside-truck ob13 SrC) (inside-truck @615 tri)
(part-of $tr c9) (loc-at pot c9) (lbc-aSO .9) (aS-airplanes p13 all) (at-obi @612 a4)
(Same-.cisy po9 .9) (same-city .9 Poo) (inside-airplane ohio piG)))
(part-of SIlO CIO) (loc-aS Polo CIO) (loc-as al0 CIO)
(same-city Polo .10) (same-city al0 Polo) es...e~eeeen~eeeeeee
(part-of 5fth dl) (loc.aS poll dil) (loc-at all ciI)
(asame-city poll all) (asame-city 411 poll) (PROBLEM aew-3-2
(part-of Wr2 c12) (loc-&t po12 c12) (loc-at a12 cR12) (hae-instances, OBJECT .60 @61 @62 .63 @64 ohS @68 oh)
(sa~me-city p.12 a22) (same-city a12 poi2) (has-instances TRUCK
(part-of Sr13 c13) (loc-aS p.13 c13) (lo.caSa13 c13) trld Sri? 5r8 ri$ W9r20 tr21 trill Sr23
(same-city p.13 a13) (sameo-city a13 po13) st24 tr25 tr26 tr27 tr28 tr29S r30 tr3l ir32)
(part-of trIl c14) (loc.&S poll c14) (Icc-as al4 cl4) (h~asinstances AIRPLANE plO pi1 p12 p13)
(same-city po14 all) (same-city all poll)
(parS-of SrIS cIS) (loc-at pa1s cIS) (loc-at &1S cis) (stat. (and
(same-city pals aIS) (same-city &Is pals) (at-truck trlO all) (aS-truck sri? pco)

(as-truck Stil p.?) (at-truck trig all)
........... 0.................5 (aS-truck Sr20 at) (at-truck 5,21 p.4)

(&S-truck Sr22 p.0) (at-truck 4r23 po9)
(PROBLEM now-3-0 (aS-Stuck Sr24 pals) (&S-truck tr25 p.2)
(has-instances OBJECT (&$t-Suck Sr26 aIS) (at-truck 9r2T po12)

@60 obi @62) (at-truck Sr28 p.12) (aS-Snuck tr29 p.s)
(kas-instances; TRUCK (a&trSuck SilO po9) (at-truck tr31 &I)

Wr6 Sri? WSh trIO WOr2 l Sii r22 sr23 (at-truck tr32 ag) (part-of triO clIi)
1,24 1r2S tr26 Sr27 1r28 ti29t r30 tr31) (part-of sri? c9) (part-of 5trh c?)

(has-instances AIRPLANE (pasrt-of trIO c~l) (part-of tr20 c6)
plO pi1 p12 p13 PH4 pis pl6) (part-of Sr~l c4) (part-of tr22 cO)

(part-of Sr23 c9) (part-of tr2l cis)
(state (and (part-of Sr25 c2) (part-of WS2 ciS)
(at-truck W6l p.,3) (&&-truck Wr? p.13) (part-of tr27 c12) (part-of tr28 c12)
(at-truck Sri$ a4) (at-Struck trig p9?) (part-of it" c5) (part-of Sr30 cg)
(ati-truck Sr20 p.8) (at-Struck 5t21 pals) (part-of tr~l ci) (part-of tr32 c9)
(at-truck ir22 p.15) (at-Struck tr23 a4) (inside-truck .60 sr2l) (inside-truck @6l10sr)
(as-truck tr24 p.12) (at-Struck tr2S a?) (at-ohI @62 SO) (as-obj @63 p.2)
(a*-Struck tr2f p.1) (&S-truck tr27 &10) (inside-Struck @64 trill) (as-ohj .61 ail
(&s-Struck Sr28 .6) (&s-Stuack tr29 a13) (inside-truck @b6 trI9) (inside-arplane Wb p12)
(at-truck tr3O p.12) (at-Struck tr3i p.2) (aS-airplane p10 .15) (aSs-airplane pi1 &Is)
(part-of ISIS c3) (pars-f srI? c13) (as-airplanet p12 as) (at-airplane p13 &13)))
(paro-of 5th~ c4) (part-of twig c?)
(pa~rt-of sr2O c8) (part-of ir2l cIS) (goal (and
(pa~rs-of Sr22 ciS) (part-of 1r23 c4) (inside-truck ob1 Sr3) (st-truck tit pall)
(pars-o Sr24 c12) (pars-of tr25 c?) (inaside- airplane oh? p12) (inside-truck @60 tr14)
(part-of St2O c4) (pastr-of tr27 dIO) (inside.-sirtpaae .61 plO)))
(part-of sr2i ci) (pan-of 5t29 c13)
(par"(o WO3 c12) (pa~rt-of sr3i c2) *5e55C~55555*5e5~efe

Figure 8.5: Set of problems created from the dialogue in Figure 8.4. The system creates
random. initial state configurations and goals that follow the user's specifications.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 159

8.2.2 Set up of experiments

The set of problems reported here in the experiments consists of 1000 problems each
with 1 to 20 goals and more than 100 literals in the initial state. The experiments do
not test the dynamic reorganization of the case library. The relevance-bias followed by
the case library manager to insert new cases into memory is fixed along the tests (see
chapter 5). The replay mechanism uses the exploratory merging strategy to combine
guidance from multiple analog cases.

The underlying goal of the experiments is to compare the performance of the
analogical and the base level problem solvers with respect to their efficiency to solve
problems. The experiments vary two major factors:

"* The CPU running time limit that the problem solver can spend solving a
problem.

"* The contents of the case library, i.e., the amount of knowledge learned
and stored in memory.

The performance of the base-level problem solver is only affected by the first
factor, i.e., the CPU time bound. The problems generated for the experiments in th',
logistics transportation domain are all in principle solvable from the domain theory.
Therefore the base-level problem solver is not able to solve some of the problems,
only because of the limited time that it is allowed to spend searching for a solution.

The performance of the analogical reasoner is affected by both factors. It is clearly
inherent to the analogical reasoning process that the contents of the case library affect
the performance of the analogical reasoner. The search is reduced as a function of the
guidance received from the case library. The dependency on the CPU running time
bound is due to the fact that the analogical problem solver also performs base-level
search for the unguided parts of its search space.

The experiments are conducted in the phases presented below. At the end of the
last phase, all 1000 problems are solved by the derivational analogy reasoner with a
CPU time bound of 350 seconds.

1. First, 250 initial problems, considered simpler as their goal statements have less
than 7 goals, are all run without analogy up to a CPU running time bound of
250 seconds. Each problem that is solved within this time bound was indexed
appropriately, and stored into the case library.

2. The same set of 250 problems is then solved by derivational analogy up to the
same CPU time bound of 250 seconds. Let P be one problem in this set. In
this phase, P is solved by derivational analogy using the case library in the
following way. There are two situations: either P was solved, or not solved,

160 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

in the previous phase without analogy. If P was solved previously, then this
means that the corresponding solution case for P, say case-P, is stored in the
case library. In this situation, the retrieval procedure is explicitly blocked from
considering case-P as a possible guiding case, for experimental fairness. The
retrieval procedure returns guidance from other cases in the library. If P was
not solved previously, and the problem is newly solved by derivational analogy,
then it is stored in the case library at this phase. The guiding case library is
then incremented also along this phase.

3. The other 750 problems have up to 20 goals. They are given to both problem
solving configurations to be solved without and with analogy alternatively, in
sets of 20 problems each, with the same CPU time bound of 250 seconds. Once
again, the case library is used and incremented, in the same way as in phase 2.

4. Finally, after the three phases above, there were only a few (17) problems that
had not been solved by analogy within the time bound of 250 seconds and there
were many (566) problems that the base-level problem solver had not solved
within the same time bound. In this final phase, I increased the CPU running
time bound to 350 seconds. The` problems were tried again with analogy and
the 566 problems were all tried again without analogy. The runs by analogy
benefitted both from the increase in the time bound and from the large case
library that they could use. All these 17 problems were solved by analogy. Only
a few extra problems (1 1 out of the 566) were solved without analogy.

8.2.3 The solvability horizon

It is a fact that all the problems generated are solvable from the domain theory pro-
vided to the problem solver. Were there enough search time available and NoLIMIT
without analogy should find a solution to any problem. In this domain all the prob-
lems are solvable, as the version I used for these experiments does not include any
resources that can be exhausted (see appendix A). The generation algorithm also
assigns by default at least one truck to each city.

The experiments focus on learning how to accomplish more efficiently the complex
planning aspect of the problems. An unguided exploration of the search space drives
the problem solver very easily into a chain of inconvenient or wrong decisions from
which it is very hard to recover, since there are a very large number of alternatives at
each choice point. Therefore although all the problems are solvable theoretically, in
practice they become rapid1 unsolvable within a bounded running time when their
complexity increases,

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 161

One of expected and experienced contributions of the analogical reasoner is the
increase that it affords in the solvability horizon of the problem solving task: Many
problems that the base-level problem solver cannot solve within a particular search
time limit are solved by the analogical reasoner within that limit or a smaller one.

Figure 8.6 plots the number of problems solved without and with analogy for
different CPU times bounds.

"* A point (t,p) on the dashed curve of the graph of Figure 8.6 shows that the
base-level nonlinear problem solver is able to solve p many problems when
its allowed search running time is bound to t seconds for each individual
problem. Examples are the points (50,355) and (300,451).

"* A point (t',p') on the solid curve of the graph of Figure 8.6 shows that the
analogical nonlinear problem solver is able to solve p' many problems when
its allowed search running time is bound to t' seconds. Examples are the
points (50, 784) and (300, 993).

Without analogy, i.e., by base search, NoLIMIT solves only 458 problems out of
the 1000 problems even when the search time limit is increased up to 350 seconds.

This graph shows by itself a very significant improvement achieved by solving
problems by analogy with previously solved problems. However one may think that
without analogy the system still can solve 458 problems out of the 1000 problems
which represents 45.8% of the total number of problems. The interesting fact expe-
rienced was that the percentage of problems solved without analogy decreases very
rapidly with the complexity of the problems. The experiments clearly showed this fact
which is not explicitly represented in the graph of Figure 8.6. In order to show this
increase in the solvability horizon of the problem solver as a function of the problem
complexity, I face the question of how to define a complexity metric.

There are several dimensions along which problems differ and can be considered
to compare the problems' relative complexity, to wit:

"* The number of goal conjuncts;

"* The number of literals in the initial state;

"* The length of the solution, i.e., the number of steps in the final plan;

"* The number of nodes searched in the problem solving episode;

"* The search time expended solving the problem.

162 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

l-
OW0

1700i WtAnog

6

7W----------------- -

20

0 50 100 150 2W' 250 30 350 400
Time Bound (seconds)

Figure 8.6: Number of problems solved from a set of 1000 problems for increasing running
times bounds. By base-level search the problem solver solves only 458 problems while with
analogy it solves the complete set of 1000 problems.

Initi illy the more complex sets of problems are generated by increasing the number
of goal conjuncts. However the complexity of the individual goals varies significantly
in particular with the specific corresponding initial state. It thus happens that some
problems with more goals are less complex than other problems with a smaller number
of goal conjuncts. This notion of complexity is more related to the length of the
solution returned. However, even for problems with the same solution length, the
problem solver may have found that one problem more difficult to solve than the
other, for example both in terms of the cost of generating the alternatives available
to solve the problem and the size of the search space. This discussion illustrates
the hard question that is the one of defining an adequate measure G complexity of
problem tasks. (This can be viewed as an instance of the general problem of studying
problem complexity [Kolmogorov, 1965].) The arguments above lead to the definition

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 163

of a complexity metric that encompasses more than one dimension of comparison.
The generation of more complex problems can only be driven by the number of goal
conjuncts and literals in the initial state. After a problem is solved however there is
the additional problem solving information that helps ranking the problems according
to their relative complexity.

Figure 8.7 shows the increase in the solvability horizon achieved by the analogical
reasoner as a function of the problem complexity. The 1000 problems are all solved
either without or with analogy and are sorted according to the following metric:

* Problem P is more complex than problem P' if the the solution for problem P
is longer, i.e., has more steps, than the solution for problem P'.

* If the two solutions for P and P' are of the same length, then P is more complex
than P' if P explored more search nodes than P'.

Figure 8.7 shows four graphs each corresponding to 250 problems of increasing
complexity from (a) through (d). The solid curves represent the results from the
analogical reasoner while the dashed curves represent the results from the base-level
problem solver.

The meaning of a point in these graphs is the same as the one introduced above
for a point in the graph of Figure 8.6. The sequence of the results in these graphs
represents a major achievement of analogical problem solving. The gradient of the
increase in the performance of the analogical problem solver over the base-level algo-
rithm shows its large advantage when scaling up on the complexity of the problems
to be solved.

The following sections provide several direct comparison of the performance of
the base-level and the analogical problem solver along various dimensions. These
comparisons are mostly done for the set of problems solved by both configurations.
The comparisons are interesting but the reader should keep in mind the remaining
562 problems that are not even solved without analogy within the CPU running
time bound of 350 seconds. The performance of the analogical reasoner while solving
this set of 562 problems cannot be compared against a concrete base-level run as
there is not such one. It is an improvement without a term of comparison. It is an

.,,provenient in the solvability horizon of the problem solver.

8.2.4 Cumulative running times

Previous comparisons between the performance of a problem solver before and after
learning control knowledge [Minton, 1988, Knoblock, 1991, Etzioni, 1990] were done

164 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

I I
150 150.

100 100 /

so s
-0 VAaI~ ~ ~ ihout ilg8- Mtx Analogy

-*With Analogy -*With Analogy

0 O0 100 150 209 250 300 350 400 0 59 100150200250300350400
Time Bound (seconds) Tim Bound (seconds)

(a) (b)

2900 ~200.

I SO I SO A g g
.- WAalowgiy *- a ogy

'100. log.

0 o 77 7

Sol , . ,1. - 3

0 so 1001500 0 03 0 W50400 l50 100100250300350400
Time Bound (seconds) Time Bound (seconds)

(c) (d)

Figure 8.7: Number of problems solved for different ranges of problem complexity

by graphing the cumulative running times of the two systems over a set of problems.4

To follow this precedent I also graph the cumulative performance of the two systems.

4The next sections consider the retrieval times in addition to the running time for the analogical
runs.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 165

Figure 8.8 shows the cumulative running time for the set of problems (458) that
were both solved by base search and by analogy. The curves are monotonically
increasing because of the cumulative effect, and they are smooth because the problems
are sorted according to their running time.

"* A point (P, T) on the dashed curve of the graph of Figure 8.8 shows that
the base-level nonlinear problem solver spends T seconds to solve all of the
first sorted P many problems. Examples are the points (100,759.23) and
(458,19852.48).

"* A Qoint (P, T') on the solid curve of the graph of Figure 8.3 shows that
the analogical nonlinear problem solver spends T' seconds to solve all of
the same P many problems. Examples are the points (100,586.12) and
(458,6026.89).

S20000.

C16000-

14000 I
S/ n--4. Without Analogy

12000- - - With Analogy /
10000-

6000. //

4000-

0.
0 50 100 150 200 250 300 350 400 450 5S0

Number of Problems - Solved

Figure 8.8: Cumulative running time for the 458 problems from a set of 1000 problems
solved both by base-level search (without analogy) and by derivational analogy (with analogy)

The graph shows a final factor of 3.6 cumulative speed up of the analogical problem
solver over the base NoLIMIT. The maximum individual speed up is of a factor of
approximately 38 (see the results for problem number 542 in the tables in appendix A).
The graph compares the running times for the solved problems.

166 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

To make this comparison more similar to the ones performed previously in PRODIGY

[Minton, 1988), I compute the cumulative running times accounting also for the prob-
lems not solved by the base level problem solver within the time bound of 350 seconds.
Therefore for each unsolved problem, I add the running time until the time bound
limit is reached, in the same way as it is done in [Minton, 1988]. Figure 8.9 shows
the curves obtained.

~200OW

15 00000.'

Q/

/

c-- -e Without Analogy /
6 *-* With Analogy /

/
100000 /

/
/

/
so=o

0 I L I IlI I

0 100 200 300 400 500 600 700 800 900 1o00
Number of Problems (all)

Figure 8.9: Cumulative running time for the set of 1000 problems. If a problem is not
solved it is accounted for with the CPU time limit used of 350 seconds.

The 1000 problems solved by analogy correspond to a total of 39,479.11 seconds,
while the total running time effort of the base level problem solver corresponds to
210,985.87 seconds. This represents a speed-up of a factor of approximately 5.3, and
also means that the cumulative savings in running time for analogy is approximately
81.3%.

No direct comparison between earlier PRODIGY/EBL and current PRODIGY/ANAL-

OGY is possible because the former used a linear problem solver whereas the latter used
a nonlinear one. Moreover the complexity of the problems was substantially greater
for PRODIGY/ANALOGY. These factors mitigate towards a larger overall search space
for the current work and therefore more room for learning, as observed with respect
to improved average running time and solvability boundary.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 167

8.2.5 Solution length

Another interesting issue to analyze is the comparison of the quality of the solutions
produced by analogy and the ones returned by the base NOLIMIT. This study uses
a measure of quality of plans which is based simply on the length of the solution.'

The study is done by finding the difference between the length in the solutions
found by NoLIMIT and by analogy for each problem. Figure 8.10 shows a table
summarizing the results found.6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 2 7 28 39 168 72 36 37 26 16 9 7 3 2 2 0 0 1

79 168 211
17.25% 36.68% 46.07%

First row - Difference in solution length from problems solved by base-
level search and by analogy

Second row - Number of problems with the corresponding difference in
solution length

Third row - Number of problems for which analogy produces a
longer (79), equal (168), and shorter (211) solution than by base-
level search

Fourth row - Percentage of the total problems solved (458) of
longer/equal/shorter solutions produced by analogy

Figure 8.10: Comparison in solution length between the base-level and the analogical prob-
lem solvers

The immediate result from this table is that in 82.75% (36.68% + 46.07%) of the
solved problems the analogical reasoner produces plans of no worst quality than the
ones produced by base-level search. In terms of the total 1000 solved problems by
analogy, in only 7.9% of the problems (79/1000) does analogy produce longer plans.

'In [PHrez, 19921 Pirez proposes to research in acquiring control knowledge from an expert to
guide the problem solver to achieve plans of higher quality according to several dimensions.

6 When the alternatives at the decision points are not heuristically ordered, NOLIMIT makes arbi-
trary choices in order not to favor any particular syntactic order dependent on the user specification
of the domain. Along the experiments, some of the problems were rerun more than once (for example
with different CPU time bounds). The solution considered without analogy is the shortest solution
found by NoLIMIT in case different solutions of different lengths were found for the same problem.

168 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

Before I ran this comparison, I had not a clear feeling of what the outcome of
this study would be. In fact I feared an eventually more balanced or even disad-
vantageous result for analogy. The reason for this expectation (which turned out to
be ungrounded) is the exploratory strategy that I follow to merge the guidance from
several cases at replay time (see section 7.2.2). The random merging of the cases was
dictated by a considerable amount of thought and debate, which I summarize also in
section 7.2.2. I chose to follow the principle that a learner benefits more from random
exploration of its choices, if no preferences are available, than from following always
a fixed exploration order. In particular this principle applies to the replay of multiple
cases in the random interleave of the several guiding cases when no other preferred
choice is known. Hence the exploratory merging strategy leads to novel explorations
of the search space allowing the problem solver to encounter "surprising" successes or
failures from which it can learn by enriching its library of problem solving experience.
Though supported by this learning argument, it was not clear to me what were the
effects of the approach .n the quality of the specific final solution delivered by the
analogical problem solver. The results in Figure 8.10 show the rewarding fact that
the overall replay algorithm of multiple guiding cases produces solutions of equal or
better quality in a large majority of the situations.

8.2.6 Retrieval and replay times

The previous results shown account for the running time of the analogical replay
mechanism. This section presents additional results that include both the retrieval
and replay times.

In an initial study to compare the retrieval versus the replay times, I selected
arbitrarily 50 "simple" problems, and 50 "harder" problems, according to their run-
ning time without analogy. (The problems are considered "simple" as they are solved
without analogy within 15 to 25 seconds and "hard" as their running times fall in a
higher range of 30-100 seconds.) Figure 8.11 (a) and (b) plot for each problem from
the simple and hard problem sets respectively, the sum of the time for retrieval of the
corresponding guiding cases and their replay time by analogy. The dotted curves with
cross points are smooth because the problems are sorted according to their running
time without analogy.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 169

"* A point (p, t) marked with a cross on the dotted curve of the graph of
Figure 8.11 (a) and (b) shows that the base-level nonlinear problem solver
spends t seconds to solve problem p. Examples for the graph in (a) are the
points (2, 16.26) and (20, 19.29). Examples for the graph in (b) are the points
(4,31.72) and (47,91.85).

"* A point (p, t') marked with a star on the solid curve of the graphs of Fig-
ure 8.11 (a) and (b) shows that the analogical nonlinear problem solver
takes t' seconds to retrieve the similar guiding cases from the case library
and to replay them to solve problem p. Examples for the graph in (a) are
the points (2,5.64) and (20,23.11). Examples for the graph in (a) are the
points (4, 7.77) and (47,26.96).

* 0IM

iff

3 ~ lea +.-.$ Rwim. oiWPP

-SII IIIIII I I • 3Sli I9I S MNMII

Sips Prbem1. ~rrodn

(a) (b)

Figure 8.11: Retrieval plus replay time for 50 simple problems (a) and for 50 harder
problems (b). The problems are sorted according to their running time without analogy.

Figure 8.11 (a) shows some occasional spikes above the curve of the running times
without analogy. This is not surprising and shows that for some simple problems, it
might not compensate to spend the effort of retrieving similar past cases and replaying
them. Figure 8.11 (b) plots the equivalent results but now for the harder problems.
The sum of the retrieval and replay times is now always less than the running time
without analogy.

To report this comparison for the total set of the 458 problems solved both with
and without analogy, I follow a slightly different way of graphing the relationship to
avoid the irregular flavor of the unsorted curve. For each problem I take the difference
between the running time without analogy and the sum of the retrieval and replay

170 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

times.7 These differences are then sorted in increasing order. Figure 8.12 graphs this
difference.

o A point (p, 6) on the curve of the graph of Figure 8.12 shows that for problem
p, there is a difference of 6 seconds between its running time without analogy
and the sum of the retrieval and replay time of its analogical problem solving
episode. Examples are the points (50,-5.37) and (430, 112.31).

300

20[

200-

1W)

50

150 2 250 30 350 I 5
Solved Problems - Sorted

-so-

Figure 8.12: Difference between the running time without analogy and the sum of the
retrieval and analogical running times for the problems solved both by base-level search and
by analogy

A negative difference corresponds to a problem for which the sum of the retrieval
and replay times is larger than the running time without analogy. The problems
with a negative differential are equivalent to the spikes above the dashed curve in

7Paul Cohen at the AAAI Spring Symposium, March 1992, also suggested that graphing the
difference between the two curves would provide a better visualization of the resu'ts.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 171

Figure 8.11 (a). The few problems (16.5% of the total set of problems) with negative
differences consist of the simpler ones for which the cost of searching for similar cases
in memory and replay these, does not represent savings in the problem solving effort.

There is an interval for which the difference is close to null. These problems
correspond to still simple to moderate complex problems for which it seems equivalent
to search for a solution by unguided search or by analogy with similar past cases.

Finally the curve abruptly takes off into a sharp positive interval. For the more
complex problems the curve shows the difficulty that the base-level problem solver
encounters as compared to the analogical reasoner.

The plotted differences only report on the problems solved by both configurations.
The next section extends the study of the cost of retrieving for all the 1000 problems
along a different dimension.

8.2.7 Retrieval time against the size of the case library

Another challenging result to observe is the effect of the size of the case library in the
retrieval time. For the results graphed in Figure 8.13, the problems are ordered in the
exact order in which they were solved and stored into memory. As the case library
grows incrementally, if a problem pi is solved after a problem p2, then the size of the
case library is larger when searching for similar cases for problem p2. Figure 8.13
graphs separately the retrieval and the replay times for each individual problem in
the chronological sequence in which they are solved.

"* A point (p, t,) on the dashed curve of the graph of Figure 8.13 shows that
it takes t,. seconds to retrieve a set of similar cases for the Pth chunk of 100
problems. Examples are the points (3,859.74) and (10, 3187.26).

"* A point (p, t,) on the solid curve of the graph of Figure 8.13 shows that it
takes t, seconds to replay the retrieved set of similar cases for the Pth chunk
of 100 problems. Examples are the points (3, 2092.70) and (10, 13006.69).

The curves are not monotonic. In particular the decrease verified for the fifth
chunk of 100 problems corresponds to the fact that the sequence of problems proposed
to the system has two phases (see section 8.2.2) of monotonic increasing complexity
(number of goals) with a reset to a restart to a simple complexity approximately after
the first 400 problems.

The curves are also not linear. In particular the steep rise of the curves at the
end corresponds to an abrupt increase in the complexity of the last sets of problems
(see the tables of results in appendix A).

The conclusion from Figure 8.13 is that the retrieval time does not suffer a consid-
erable overhead with the size of the case library. The data structures used to store the

172 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

~14OW -

IWO

w- -e Retrieval
___ *-*Replay

__- 10 , , ,
0 1 2 3 4 5 6 7 8 9 1

Problems (x 100)
Figure 8.13: Problems ordered in the sequence in which they were run. The case library
is growing along the z axis at the same time that more problems become solved. The graph
represents the replay and retrieval times accumulated for chunks of 100 problems.

case indexes in conjunction with the bounded match value permitted are responsible
for this behavior (see chapter 6).

8.2.8 Search nodes explored

Finally Figure 8.14 compares the number of nodes explored from the search space in
both configurations. The difference between the number of nodes searched without
analogy and with analogy is computed, sorted in increasing order, and graphed for
each of the solved problems.

8.2. THE LOGISTICS TRANSPORTATION DOMAIN 173

9 A point (p, 6) on the curve of the graph of Figure 8.14 shows that the
base-level problem solver explored b more search nodes than the analogical
problem solver when solving the problem p. Examples are the points (50, -3)
and (458,820).

144790o

600.

I

I

13 400-

300-

200.

100-

50 100 150 2o0 250 300 350 400 450 500
Solved Problems - Sorted

-100

Figure 8.14: Difference between the number of nodes explored by base-level search and by
analogy for all the problems

There are some few problems for which the derivational reconstruction explores a
larger number of nodes. There may be two reasons why this happens: Either there
is a favorable random base-level search or the replaying episode experiences transfer
from inappropriate guiding cases (see chapter 7, Figure 7.3 (d)).

In general the results show that the guiding cases used by the derivational replay
provide a reduction in the search space explored for a large majority of the problems
- for approximately 78% of the solved problems.

174 CHAPTER 8. EMPIRICAL RESULTS - DIVERSITY AND SCALING UP

8.3 Summary

This chapter presented empirical results comparing the performance of the analogical
reasoner, PRODCY/ANALOGY, with the base-level problem solver NOLIMIT.

The extensive results obtained from a logistics transportation domain showed that:

"* The analogical reasoner increased the solvability horizon of the base-level prob-
lem solver considerably. Within a CPU running time bound of 350 seconds, the
complete set of 1000 problems was solved by PRODIGY/ANALOGY, while only
458 of these problems are solved by NOLIMIT (see Figures 8.6 and 8.7).

"* The cumulative running times for the analogical replay of the problems represent
a speed-up of up 3.6 over the base-level problem solver, if only the problems
solved both without and with analogy are considered. The speed-up increases
to 5.3 if the problems not solved are also accounted for with the CPU time limit
given to the base problem solver (see Figures 8.8 and 8.9).

"* The solutions obtained by analogy are of equal or shorter length than the cor-
responding ones found by NoLIMIT for 82.75% problems (see Figure 8.10).

"* When the retrieval time is added to the analogical replay time, PRODIGY/ANAL-

OGY still performs more efficiently compared to NoLIMIT for 293 problems out
of the 458 problems solved by both configurations. The other 165 problems
correspond to simpler problems for which NoLIMIT finds a solution to a problem
in a shorter time than PRODIGY/ANALOGY retrieves analogs for and replays
them (see Figures 8.11 and 8.12). '

"* Finally the retrieval time increases very moderately with the size of case library
(see Figure 8.13).

The experiments were set up with the primary focus of comparing the analogical
problem solver against the base-level problem solver for large and complex problems.
The results largely demonstrate the scalable properties of the algorithms designed
and implemented.

An interesting next phase of empirical studies would be to investigate on the sen-
sitivity of the analogical reasoner itself along other dimensions, such as the dynamic
reorganization of the case library, variable retrieval times, variable thresholds for the
partial match, and recursive retrieval of cases for any extra planning needed.

Chapter 9

Related Work

The overall achievement of this thesis consists of the design, implementation and scale
up of a complete automated analogical reasoner and learner for general purpose prob-
lem solving. The presentation of the work is organized along the different dimensions
that characterize the full analogical cycle, namely the generation, storage, retrieval,
and utilization of the cases, i.e., problem solving episodes. The performance of the full
system is evaluated in a variety of domains, in particular in a complex transportation
domain with a case library of more than 1000 cases.

This chapter describes the related research to this thesis work. It is divided into
four sections along the dimensions in which I presented this work. The first sec-
tion presents some alternative ways followed in other research projects to generate
reusable knowledge. Section 2 discusses, other techniques to organize the stored ac-
quired knowledge and compares the retrieval strategy designed in this thesis with
some of the numerous retrieval strategies used in other systems. Section 3 focuses on
the systems that reuse acquired problem solving experience both locally and globally.
Finally section 4 summarizes the comparisons presented.

9.1 Generation and contents of cases

Most of the CBR systems start initially with a case library that is provided by the
external user. PROD!GY/ANALOGY generates its own case library of problem solv-
ing episodes generated from the problem solver's reasoning from a domain theory
which usually provides knowledge to solve efficiently only simple problems. Both
PRODIGY/ANALOGY and most of the CBR systems incorporate incrementally into
their case library the new adapted cases.

The contents of a case vary quite considerably from an enumeration of steps to
different levels of causal relationships between the steps.

175

176 CHAPTER 9. RELATED WORK

PRIAR [Kambhampati, 19891 reuses plans in a nonlinear hierarchical planner. Fol-
lowing the derivational analogy philosophy, PRIAR generates plans by recording the
validation structure of a plan, which represents the dependencies among the plan
steps, namely the links between preconditions and effects of the plan steps. The sub-
goaling structure that PRODIGY/ANALOGY annotates at the case nodes corresponds
to PRIAR's validation structure.

APU [Bhansali, 1991) also stores at each case more than the subgoaling links
among the plan steps. Bhansali's domain of UNIX programming involves plans which
consist mostly of independent subplans for which it is expensive to search for the
applicable schemas. Therefore APU stores the set of alternative schemas that could
be used in addition to the particular one that succeeded in the stored episode. In
the new partially matched situation, APU gets information from the past case on
alternative schemas to try instead of having to search for them once again.

Blumenthal implemented a replaying system, REMAID [Blumenthal, 1990] that
creates human computer interfaces. The design problem consists in ordering a set
of goals that specify the problem to be solved. REMAID annotates at the cases the
goal orderings heuristics that successfully determined the correct goal ordering. It
annotates also the specific rule that achieved each goal. The information stored is
similar to the one stored in APU though REMAID emphasizes the goal orderings while
APU focuses on the rules that address the goals.

In addition to the subgoaling structure (as in PRIAR), PRODIGY/ANALOGY stores
the available alternatives both at the goal ordering level and at the operator level
(similarly to APU and REMAID). PRODIGY/ANALOGY also records the reasons for
the failure of the alternatives when these were explored and failed in the past.
PRODIGY/ANALOGY makes use of the failure record at replay time to reject the al-
ternatives for which the justifications of failure still hold in the new context.

CHEF [Hammond, 1986] also records the failures encountered. In fact CHEF centers
its retrieval and adaptation reasoning around the failures. When a case is adapted
but fails at a simulated execution phase, CHEF detects the violation of an expectation,
recognizes the reason for failure, and uses it to index the new case.

KRITIK [Goel, 1990] stores at the cases the functional-structure dependencies
among the different subparts of the design artifact. This qualitative information,
as Goel calls it, is used at the adaptation phase to identify the parts that need to
be modified and propose modifications. This is an interesting idea quite suitable for
the design domains. PRODIGY/ANALOGY does not store automatically qualitative
information eventually known at a higher level of abstraction than the one available
directly at problem solving time. However the justification language developed for
PRODIGY/ANALOGY in fact leaves margin to user defined justifications that may be
checked at replay time These can capture an arbitrary qualitative level of depen-

9.2. STORAGE AND RETRIEVAL OF CASES 177

dency among the solution steps. It is an interesting future work research direction to
explore more in depth the user intervention in providing justifications, their utility,
and automating the learning process of the user input [P~rez, 1992].

9.2 Storage and retrieval of cases

Case-based reasoning and derivational analogy are in the abstract the same but have
very different computational emphases. The former focuses on developing appropriate
memory structures and the bulk of the work concentrates in retrieving from mem-
ory the right similar situation to the problem under consideration. The latter uses
complex traces with justifications for decisions and permits more flexible modifica-
tion and reconstruction. In a nutshell, the main emphasis of derivational analogy is in
experience-driven problem solving, whereas case-based reasoning emphasizes retrieval
and direct application.

The episodic contents of the cases drive the indexing in a network of links. Schank
proposed MOPs [Schank, 1982] as indexing structures for combining generalized and
episodic knowledge. IPP [Lebowitz, 1980] and CYRUS [Kolodner, 1980] pioneered
the use of these memory structures followed by several others CBR systems. The
definition of the "right" indices to use is the essence of the majority of the CBR ef-
fort. PRODIGY/ANALOGY uses two predefined categories of indexing, namely the con-
junctive goals and the initial state configuration. PRODIGY/ANALOGY automatically
identifies the relevant features of the initial state to be used as indices by determining
the weakest preconditions of the goal conjuncts according to the particular solution
found.

An initial attempt to retrieve similar possible matching past cases was experi-
mented by Newell, Shaw, and Simon in the Logic Theorist (LT) [Newell et al., 1963].
LT was written in 1956 and its goal was to explore the use of heuristics in problem solv-
ing. LT's particular domain task was proving theorems in the propositional calculus
from a set of axioms. LT has three operators, namely detachment, forward chaining,
and backward chaining, that it can apply in chain to the theorem to be proven in or-
der to transform it recursively into the base axioms. LT's method involved matching
all the combinations of axioms to see which operator is suitable. In order to prune out
some of these combinations from being candidates to the matching process, LT used
a similarity metric that tested equality of some absolute features, like the number
of distinct variables of the new theorem and the axioms. It is interesting that this
similarity metric did not produce any gains, and in fact, when used, even made LT
miss proofs because it sometimes rejected the correct analogs. The question of what
features should be considered in a similarity metric is therefore raised as early as LT.

178 CHAPTER 9. RELATED WORK

LT is a case study that shows that a simple syntactic or superficial similarity metric
may not lead to any particular good results. In this thesis I re-experienced this same
problem and attempted to address it in particular by developing the foot-printing
algorithm to find the goal-relevant features of the initial state. But it is still the case
that the features in this foot-printed set are not uniformly relevant. In this work I
also made an initial study of the dynamic reorganization of memory. This relative
relevance of the foot-printed features can be incrementally understood by interpreting
the utility found by the replay process of the guidance suggested. After this initial
comparison with the pioneering LT, I discuss now other more recent systems.

In ANAPRON [Golding, 1991] cases are stored as negative exemplars of rules and
retrieved directly when a rule is proposed. ANAPRON explores several different sim-
ilarity metrics. The retrieval strategy is also based on thresholds for an adequate
match level. ANAPRON learns these thresholds.

In PER [Kedar-Cabelli, 1985] Kedar studies the analogical concept learning prob-
lem where candidate analogs are retrieved based on the purpose of the analogy to be
performed.

Both PRIAR and APU retrieve candidate similar analogs by evaluating the parts
of the stored plan or program that are still useful in the new context. The retrieval
is done by searching the stored cases linearly. PRIAR's retrieval strategy considers
the preconditions and effects of the operators represented in the stored validation
structure. APU's retrieval strategy similarly considers the abstract structure of the
solution to be replayed. Both systems try to follow Gentner's structure-mapping
approach [Gentner, 1987] to evaluate the match between problems by comparing
solution derivations rather than the features that define the problems. However as
this integral process is very expensive, PRIAR still uses the initial state features in
addition to the validation structure, while APU compares generalized and abstract
program structures.

The retrieval strategy in PRODIGY/ANALOGY uses the features of the initial state
and the goal statement. It automates the process of maximizing the understanding
of the structure of the plan by foot-printing the initial state and finding the sets
of interacting goals. These are the indices compared with the new problem solving
specifications. There is no way to compare the solved past problems and the new
still unsolved problem more structurally exactly because the new problem was not
solved yet and is specified only in terms of of its initial state and goal statement.
APU's approach of using the abstract structure to guide the retrieval process is very
interesting and it is in consonance with our proposed future working direction in
integrating analogy and abstraction in PRODTGY (see section 10.2).

9.3. UTILIZATION OF LEARNED KNOWLEDGE 179

9.3 Utilization of learned knowledge

There are two extreme approaches to utilize acquired experience, namely the learned
knowledge is used when it matches totally or partially the new decision context.

The "eager" learning strategies, like EBL [Mitchell et al., 1986, Minton, 1988] and
its descendants [Etzioni, 1990] acquire provably correct and generalized knowledge
for local decision making. This local control knowledge is applied only when the
new situation matches completely the supporting necessary conditions of the control
rules. In particular these methods may involve both a large learning effort [Prez and
Etzioni, 19921 and a large matching cost [Tambe and Rosenbloom, 19891. When this
is tolerable, the method is very beneficial in leading the problem solver to close to, if
not so, optimal performance.

Several research efforts try to alleviate either or both the learning and the match-
ing costs. In his thesis, Tadepalli [Tadepalli, 1989] developed a lazy explanation-based
learning in which partial explanations are produced alleviating therefore the learn-
ing effort of proving generalized control knowledge. [Duval, 19911 also presents an
explanation-based learning method in which the deductive step is replaced by an ab-
duction reasoning step that produces knowledge that is validated by experience. More
recently Bhatnagar [Bhatnagar, 1992] builds incomplete proofs of failures and learns
potentially over-general control rules that are refined incrementally by experience.

The line of approaches progressively moves from one end of the spectrum to the
other end where the pure case-based reasoning systems stand. PRODIGY/ANALOGY

is close to that end of the spectrum as it explores a lazy learning technique in
which no provably correct generalization is attempted from one problem solving
episode and only a partial match is required in order to apply the learned knowledge.
PRODIGY/ANALOGY combines an operator-based problem solver with a case-based
reasoner.

Chunking in SOAR also accumulates episodic global knowledge. The selection
of applicable chunks is based however in choosing the ones whose conditions match
totally the active context. The chunking algorithm in SOAR is able to learn interac-
tions among different problem spaces. A chunk may therefore capture parts of the
derivational trace of the problem solving episode, in particular the p, Jblem spaces
structures, similarly to the subgoaling links. These episodic chunks however cannot
be reused flexibly, i.e., by reusing and adapting its contents.

I compare in more detail now the reuse or replay strategy of PRODIGY/ANALOGY
with other replaying systems.

Andrew Golding's thesis work [Golding, 1991], implemented in the ANAPRON
system, combines a rule-based system and a case-based reasoner and applies it to
the task of name pronunciation. The problem solvinig task is based on proposing

180 CHAPTER 9. RELATED WORK

rules for individual parts of a word, then searching for cases that override the rules
proposed, and deciding whether to follow the rule or the analogy. As opposed to
PRODIGY/ANALOGY cases are used for just one step decisions. A single case may
override several rules but each individual time a case is retrieved it is used just to
override a unique rule. The decision of using a case in ANAPRON does not interact
with the previous choices made, i.e,. ANAPRON does not backtrack. The decision is
based on elaborated similarity metrics that decide on what is the case that can be
used at each individual step of the problem solving task.

Allen and Langley [Allen and Langley, 1990] also replay successfully one step
past cases as opposed to a complete sequence of problem solving decisions as in
PRODIGY/ANALOGY.

Other systems integrate case-based reasoning with simple special-purpose rule-
based systems. MEDIATOR [Simpson, 19851 , PERSUADER [Sycara, 1987], and CASEY
[Koton, 1988] apply case-based reasoning to problem solving trying to use previous
cases first and then use simple rules if they cannot adapt the old cases to the current
problem. On the other hand, JUDGE [Bain, 1986], and HYPO [Ashley and Rissland,
1987] try first simple first principles encoded as rules, then if these fail they try
their case library. CHEF [Hammond, 1986J applies case-based reasoning to planning
meals. It generates explanations from failures detected while trying to adapt the case
retrieved.

GREBE [Branting, 1991] in particular integrates rules and precedents (cases) in
the classification of assigning a case to a specific category and explaining why the
assignment is set. Cases and rules are used in conjunction and impartially to support

and explain the classification process.
BOGART [Mostow, 19891 is an example where the replay process is not auto-

mated. It is interesting however as one of the first systems to implement parts of the

derivational analogy strategy of storing and reusing dependencies links among steps.
BOGART is able to reuse problem solving experience from previous steps of the same

problem solving episode. This within-problem reuse is however not automated as in
the internal analogy framework [Hickman and Larkin, 1990].

Transformational analogy [Carbonell, 1983] replays past solutions by systemati-
cally modifying a retrieved plan as a function of the differences recognized between

the past and the current new problem.
Internal analogy [Hickman et al., 1990] focuses in studying the analogical transfer

of experience within single problem solving episodes.
POPART, REDESIGN, and ARGO apply explanation techniques to try to adapt an

old design or program to meet new specifications [Mostow, 1989].
JULIA [Hinrichs and Kolodner, 1991] designs menus for meals. It also relaxes the

guaranteed correctness of the analogs to propose plausible solutions. The adaptation

9.4. SUMMARY 181

does not involve replanning. It is more like a constraint satisfaction problem relax-
ing under- or over- constrained situations by reinstantiation. The adaptation uses
multiple alternative cases and is able to combine subparts of them.

[Redmond, 1990] presents a CBR system where cases are stored in pieces, snippets.
These pieces are of small granularity, i.e., one-goal-operator steps, as in [Allen and
Langley, 19901. Snippets are used as a whole but problem solving is viewed as a
combination task of several snippets of other cases. This is similar to the approach
used in this thesis. PRODIGY/ANALOGY in addition determines automatically the
independent subparts of a case.

9.4 Summary

This chapter compared this thesis work with several other research efforts. The
comparison is not certainly exhaustive. Instead it tries to focus on the more pertinent
particular aspects of the analogical reasoning process.

This thesis overall develops a flexible integration of a complete derivational anal-
ogy reasoner, into a general purpose problem solving and learning architecture. The
work opened new perspectives to the reconstruction approach, e.g., allowing auto-
matic generation of annotations to the solution trace by building an introspection
capability into the problem solver, and using learning abstraction techniques to cre-
ate adequate memory indices.

A final word of comparison between PRODIGY/ANALOGY and other replaying sys-
tems in general: this thesis work is unique in having automated the complete ana-
logical cycle, namely the generation (annotation), storage, retrieval, and replay of
episodic knowledge. It is also unique in its domain-independent approach and is
demonstrated in particular in a case library of several orders of magnitude greater
than most of the other CBR systems, in terms of the size of the case library and the
granularity of the individual cases.

ANAPRON is another example of an integrated rule-based and case-based system
that was scaled up for the task of name pronunciation. ANAPRON uses a case library
with 5000 cases, i.e., examples of pronunciation of names. These cases were provided
externally, and each case illustrates at most the application of 8 operators.

The more than 1000 planning problems solved by PRODIGY/ANALOGY correspond
to more than 8000 one-goal problems, the case library is built incremental and au-
tomatically, and cases grow up to sequences of more than 200 annotated decision
steps.

182 CHAPTER 9. RELATED WORK

Chapter 10

Conclusion

This final chapter summarizes the thesis very succinctly, and discusses future research
directions.

10.1 Summary

The thesis addressed the problem of integrating analogical reasoning into general
purpose problem solving. The main goal of the work was to investigate the feasibility
of analogical reasoning as a machine learning strategy to improve the performance of
general problem solving.

Reasoning by analogy consists of the flexible reuse of previously solved problems,
i.e., cases, to guide the search for solutions to similar new problems. The issues
addressed in the thesis to apply this reasoning strategy include: the generation of
the cases for reuse, the organization of the case library, the retrieval of adequate past
cases similar to the new problem, and the replay of these previous problem solving
episodes. The thesis developed algorithms that fully automate these four phases of the
analogical reasoning process in an integrated design with a general purpose nonlinear
planner.

The global implemented system was tested in a variety of domains including a
complex logistics transportation domain with a case library of more than 1000 cases.
The results obtained demonstrated the scalable properties of the algorithms designed
and implemented. The analogical problem solver increased the solvability horizon
and reduced the search effort of the base level problem solver.

Base-level problem solver In the thesis I developed a nonlinear problem solver,
NOLIMIT that reasons about totally ordered plans and is able to interleave goals

183

184 CHAPTER 10. CONCLUSION

at different search levels. NOLIMIT is complete and therefore it extends largely the
spectrum of problems that it can solve compared to a linear planner.

Case generation The thesis automates the process of generating cases to incremen-
tally build a case library. The generation is done by retaining the lines of reasoning
underlying an episodic problem solving experience. The problem solver introspects
into its internal decision cycle to determine the reasons for its choices. These justifica-
tions consist of the links between choices capturing the subgoaling structure, records
of explored failed alternatives, and pointers to applied control guidance. A case, i.e.,
a stored problem solving episode, consists of the solution trace augmented with these
annotations.

Case storage The storage algorithm identifies the appropriate indices for the cases
and organizes the case library. The foot-printing algorithm determines the set of
features of the initial state that are relevant to achieving the goal statement for the
particular solution found. In addition the cases are multiply indexed by the sets of
interacting goal conjuncts from the user-given goal statement. The thesis developed
an algorithm to recognize these goal interactions by partially ordering the totally
ordered case steps. The connected components of the resulting partially ordered
solution correspond to the independent case fragments that can be independently
reused.

Case retrieval The retrieval procedure implemented uses a similarity metric to
rank the partially matched candidate analogs which considers the foot-printed initial
state and the goal interactions of the past cases. The matching is done incrementally
to allow stopping retrieval if some "reasonable" partial match is found, as opposed
to searching for the "best" match.

Case replay The replay mechanism involves a complete reinterpretation of the jus-
tifications structures from the past guiding cases in the new problem solving context.
When the transformed justifications are no longer valid, the replay procedure either
replans for the new situation or may recursively request additional guidance from the
case library. The replay mechanism can integrate guidance from multiple past similar
cases.

Scale up The system's performance is tested in several domains and in particular in
a complex logistics transportation domain with a case library of 1000 cases. Extensive
empirical results along different dimensions demonstrate the scalable properties of the
algorithms designed and implemented.

10.2. FUTURE RESEARCH DIRECTIONS 185

10.2 Future research directions

This thesis opens several research directions. These are follow ups to the designed
and implemented analogical reasoner.

10.2.1 Powerful tools for planning

The extension of the framework of PRODIGY/ANALOGY to more realistic domains
requires the design of more powerful tools for planning. A direction of future work
is to develop robust probabilistic planning approaches to account for the uncertainty
characteristics of the real world.

A second challenging direction is to explore the use of the episodic cases automat-
ically generated by the analogical reasoner to bridging classical planning search and
reactive planning methods.

10.2.2 Integration of learning paradigms

This thesis did not have as an immediate goal to compare the different learning
strategies within PRODIGY. However an immrrediate research direction is to inves-
tigate the integration of these different learning strategies within PRODIGY. This
will entail further work of incorporating other learning methods into the nonlinear
planner framework. In fact, while the analogical reasoner is implemented within the
nonlinear problem solver of the architecture, for chronological reasons, the previous
learning modules are implemented within the linear planner.1 Once this re-design
and re-implementation is accomplished, it is possible to compare our multiple com-
plex learning techniques and their synergistic interaction.

Below I discuss the benefits that I foresee from an integration of EBL and anal-
ogy, and abstraction and analogy (also discussed in [Veloso and Carbonell, 1993
forthcoming]).

EBL and analogy

Previous work in the linear planner of PRODIGY uses explanation-based learning tech-
niques, (PRODIGY/EBL), [Minton, 1988] to extract from a problem solving trace the
explanation chain responsible for a success or failure and to compile search control
rules therefrom.

1We are now in the process of transferring DYNAMIC, i.e., EBL + STATIC [Pirez and Etzioni, 1992],
into the nonlinear problem solver of PRODIGY 4.0 [Carbonell et al., 1992].

186 CHAPTER 10. CONCLUSION

While performing the goal regression on the derivational trace to determine the
foot-print of the initial state, the analogical reasoner performs a lazy explanation of
the solution encountered. Lazy because it goes up the successful path following the
subgoaling chain without attempting to prove any generalization of the immediate
success or recorded failures. However, although simple, it turns out to be quite useful
to take into account this lazy explanation.

The joint EBL-analogical reasoner could decide the situations where it is worth
spending effort using either of the following learning strategies: statically analyzing
the domain theory, or interpreting a trace of a solved problem to generalize control
rules therefrom, or to store the problem solving episode as a case for eventual f ture
retrieval and replay. Analogy would benefit from the integration as so-qe simple cases
and simple problem solving situations would be translated into general control rules.
On the other hand, EBL would benefit in incomplete domain theories, where the
proofs for generalized explanations cannot be pursued. Additionally, in the nonlinear
problem solving context, the number of alternatives explored is very large and very
complex goal interactions may be explored. The joint EBL-analogical reasoner could
switch from an eager costly attempt to explain a difficult trace to a lazy attitude of
storing it as a case, as a function of some threshold of the cost of the two approaches.

Abstraction and analogy

The axiomatized domain knowledge in PRODIGY is used to learn abstrac ion layers
in the ALPINE [Knoblock, 1991].

A key issue in the process of solving problems by analogy is the identification of
the details and the rele.ant features of a particular problem solving situation. As
new and past situations are not expected to match f~illy, knowing the relevance of the
information available increases the ability for successful partial matching of different
problems. The foot-printing algorithm in tais thesis determinates the features from
the initial state that were used in a particular solution to a problem. ALPINE provides
a mechanism that analyzes a particular domain, and generates abstraction levels that
group together features in a hierarchical structure, the most crucial, inmerrelated
ones at the top. An interesting direction of future work is to explore the use of the
abstraction levels generated hV ALPINE in addition to the foot-printing algorithm, as
a measure of relevance to rank partially matched candidate analogs.

The dynamic organization of memory currently does a simple abstraction by gen-
eralizing instances into their type classes. However, the use the abstraction levels
will help the dynamic organization of the discrimination network. The more relevant
features of the pyoblem can unify with the new problem before the detailed ones,

10.2. FUTURE RESEARCH DIRECTIONS 187

where "relevant" is both a function of past experience and the level in the abstrac-
tion hierarchy.

A second major benefit of the integration of analogy and abstraction is the gen-
erality of stored plans for later indexing. That is, a solution at an abstract level may
be more likely to be an applicable candidate analog than one at the ground level -

although it will require refinement by adding in details of the current problem. In
general, it would be interesting to use abstract analogs when specific grounded ones
are not present to guide search in derivational analogy.

10.2.3 Historical learning

Another interesting direction for future work is to follow Allen Newell's challenge for
"historical learning." The idea is to not reset the system from its learned knowl-
edge and increment the capabilities of a problem solver over time building upon its
learning history. The analogical reasoner could increase its own problem solving abil-
ities by combining the knowledge in its different domain-dependent case libraries,
accumulated along its lifetime.

188 CHAPTER 10. CONCLUSION

Appendix A

The Logistics Transportation
Domain

This appendix presents the problem space definition for the logistics transportation
domain, and provides the experimental data obtained supporting the empirical results
described in chapter 8.

The interested reader may contact me at veloso@cs.cmu.edu, for pointers for on-
line trace files of runs of PRODIGY/ANALOGY. These files can provide illustrations of
solved problems, generated cases, partially ordered solutions, goal indexing structures,
discrimination networks from the case library, retrieval outputs, and analogical replay
episodes, among other things.

A.1 Domain definition

;; Type Hierarchy

(is-a OBJECT TYPE)
(is-a CARRIER TYPE)
(is-a TRUCK CARRIER)
(is-a AIRPLANE CARRIER)
(is-a LOCATION TYPE)
(is-a AIRPORT LOCATION)
(is-a POST-OFFICE LOCATION)
(is-a CITY TYPE)

189

190 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

;;; Operators

(OPERATOR LOAD-TRUCK
(params ((<obj> OBJECT)

(<truck> TRUCK)
(<1oc> LOCATION)))

(preconds
(and (at-obj <obj> <loc>)

(at-truck <truck> <Ioc>)))
(effects
((del (at-obj <obj> <loc>))
(add (inside-truck <obj> <truck>)))))

(OPERATOR LOAD-AIRPLANE
(params ((<obj> OBJECT)

(<airplane> AIRPLANE)
(<loc> AIRPORT)))

(preconds
(and (at-obj <obj> <loc>)

(at-airplane <airplane> <loc>)))
(effects
((del (at-obj <obj> <loc>))

(add (inside-airplane <obj> <airplane>)))))

(OPERATOR UNLOAD-TRUCK
(params ((<obj> OBJECT)

(<truck> TRUCK)
(<1oc> LOCATION)))

(preconds
(and (inside-truck <obj> <truck>)

(at-truck <truck> <loc>)))
(effects
((del (inside-truck <obj> <truck>))

(add (at-obj <obj> <loc>)))))

A.I. DOMAIN DEFINITION 191

(OPERATOR UNLOAD-AIRPLANE
(params ((<obj> OBJECT)

(<airplane> AIRPLANE)
(<ioc> AIRPORT)))

(preconds
(and (ins ide-airplane <obj> <airplane>)

(at-airplane <airplane> <1oc>)))
(effects
((del (inside-airplane <obj> <airplane>))
(add (at-obj <obj> <loc>)))))

(OPERATOR DRIVE-TRUCK
(params ((<truck> TRUCK)

(<loc-from> LOCATION)
(<boc-to> (and LOCATION

(diff <loc-from> <1oc-to>)))))
(preconds
(and
(same-city <loc-from> <1oc-to>)
(at-truck <truck> <loc-from>)))

(effects
((del (at-truck <truck> <loc-from>))
(add (at-truck <truck> <loc-to>)))))

(OPERATOR FLY-AIRPLANE
(params ((<airplane> AIRPLANE)

(<loc-from> AIRPORT)
(<loc-to> (and AIRPORT

(diff <loc-from> <boc-to>)))))

(preconds
(at-airplane <airplane> <lbc-from>))

(effects
((del (at-airplane <airplane> <loc-from>))
(add (at-airplane <airplane> <loc-to>)))))

192 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

I,,

Inference rules

(INFERENCE-RULE IN-SAME-CITY
(params ((<loci> LOCATION)

(<loc2> (and LOCATION
(diff <loci> <loc2>)))

(<city> CITY)))
(preconds
(and
(loc-at <loci> <city>)
(loc-at <loc2> <city>)))

(effects
((add (same-city <locl> <1oc2>)))))

;;; Functions

(defun diff (x y)
(not (eq x y)))

;; Naming conventions for variables

(setf *class-short-names*
'((OBJECT . p)

(CARRIER . c)
(TRUCK . t)
(AIRPLANE a)
(LOCATION 1)
(AIRPORT ap)
(POST-OFFICE . po)
(CITY c)))

A.2. EXPERIMENTAL DATA 193

;; Naming conventions at generation

(setf *GEN-CLASS-NAMES*
'((OBJECT ob)

(CARRIER c)
(TRUCK . tr)
(AIRPLANE pl)
(LOCATION 1)
(AIRPORT a)
(POST-OFFICE . po)
(CITY . c)))

A.2 Experimental data

The experiments in the logistics transportation domain were run in Allegro Common
Lisp on a Sun SparcStation with 16 megabytes of memory. The tables below show
the data corresponding to the results shown in chapter 8 for the set of 1000 problems.
The problems are ordered in the sequence that they were proposed to the problem
solver. The meaning of the columns is the following:

Prob Num - The problem number.

Goals - The number of goal conjuncts in the goal statement.

Initial State - The number of literal in the initial state.

Search Time - The CPU time, in seconds, that NoLIMIT without analogy takes to
solve the problem or is allowed to spend trying to solve the problem.1

Nodes - The number of nodes searched. Each solution step corresponds at least to
three nodes searched. If the number of nodes searched is equal to three times

'The problem solver was given a maximum running time of 350 seconds. The test to check
whether the running time limit is reached is done when the problem solver backtracks to ensure that
there is no interruption of a successful solution path. Therefore the effective running times are not
exactly 350 seconds but are higher, as can be seen in the empirical data below.

194 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

the solution length, then it means that there was no search deviation from the
successful path.

Sol Length - Length of the solution found, i.e. the number of steps of the plan.

Replay Time - The time, in seconds, that the analogical reasoner, PRODIGY/ANAL-

OGY expended to solve the problem replaying the retrieved similar cases.

Retrieval Time - The time, in seconds, that it took to retrieve the guiding cases
for the problem.

A.2. EXPERIMENTAL DATA 195

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

1 1 109 6.26 25 6 2.50 18 6 1.40
2 1 117 7.36 29 6 2.62 18 6 1.73
3 1 107 4.43 19 6 3.03 19 6 1.90
4 1 107 6.13 25 8 3.30 21 7 1.94
5 1 110 6.76 29 8 3.68 24 8 5.62
6 1 119 22.09 73 10 5.03 27 9 5.94
7 1 116 9.94 36 II 5.38 30 10 5.60
8 1 131 8.34 31 6 2.78 18 6 2.72
9 1 122 8.17 28 8 4.42 24 8 3.81
10 1 111 11.77 45 10 4.80 27 9 5.58
11 1 136 8.19 30 9 5,10 27 9 3.31
12 1 134 23.40 82 10 5.92 30 10 7.35
13 1 128 11.60 42 7 7.42 21 7 1.94
14 1 134 10.58 36 11 10.00 39 10 7.42
15 2 106 17.72 79 9 2.40 18 6 1.89
16 2 110 6.37 27 8 3.13 21 7 2.35
17 2 108 10.43 39 10 4.95 30 10 4.70
18 2 114 43.92 178 9 5.20 27 9 5.56
19 2 114 9.70 43 8 7.17 31 10 2.44
20 2 107 13.83 52 12 8.08 39 12 3.36
21 2 122 66.83 178 17 12.45 51 17 6.35
22 2 148 43.41 90 10 4.07 18 6 3.06
23 2 154 47.76 86 6 4.18 18 6 4.32
24 2 164 58.07 81 6 4.35 18 6 4.94
25 2 155 6.79 19 6 5.62 18 6 4.81
26 2 170 68.63 82 8 6.65 24 8 8.00
27 2 131 47.48 110 13 7.00 33 11 4.54
28 2 182 68.52 79 15 11.70 33 11 10.78
29 2 183 72.17 73 22 13.17 39 13 11.59
30 2 131 31.69 96 8 14.36 24 8 1.90
31 2 187 38.24 51 15 16.32 39 13 12.09
32 2 168 43.23 64 14 16.45 45 15 10.55
33 2 147 20.59 45 10 18.15 44 11 2.51
34 2 162 81.94 97 12 20.42 37 12 5.55
35 2 186 70.39 60 11 33.61 63 12 7.71
36 2 113 10.09 38 8 3.85 24 8 4.18
37 2 126 46.48 106 9 4.83 27 9 4.35
38 2 106 17.29 76 10 5.30 30 10 4.86
39 2 125 16.73 48 16 5.42 30 10 6.36
40 2 112 41.61 111 11 5.97 33 11 7.00
41 2 127 47.15 121 11 7.30 33 11 6.95
42 2 119 29.22 107 12 7.78 36 12 6.24
43 2 114 31.59 81 14 8.13 42 14 6.81
44 2 105 6.84 29 8 8.15 34 7 1.35
45 2 107 11.67 43 11 10.90 37 10 1.86

196 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

46 2 112 17.85 54 15 17.60 62 15 7.05
47 3 105 36.22 99 6 2.57 18 6 5.06
48 3 105 38.39 123 8 2.65 21 7 3.25
49 3 120 6.68 24 6 2.83 18 6 1.66
50 3 116 9.05 30 6 3.00 18 6 1.42
51 3 102 4.28 20 6 3.03 18 6 1.64
52 3 113 4.74 19 6 3.38 18 6 2.35
53 3 103 8.01 33 9 3.87 24 8 4.55
54 3 113 15.56 65 8 3.88 24 8 2.29
55 3 116 38.38 98 9 4.08 27 9 4.20
56 3 111 17.97 58 13 4.58 27 9 2.56
57 3 111 22.22 105 6 4.82 26 6 2.22
58 3 115 6.87 29 8 5.15 24 8 3.29
59 3 111 11.97 44 14 7.52 39 13 5.50
60 3 111 62.76 140 16 8.18 42 14 4.86
61 3 111 67.19 132 19 13.07 51 17 7.05
62 3 110 45.63 110 18 13.32 57 19 8.15
63 3 110 10.42 42 14 14.22 57 14 4.47
64 3 118 70.09 108 22 20.95 58 19 11.86
65 3 110 73.91 158 19 39.83 123 18 6.79
66 3 114 8.88 37 8 3.30 21 7 245
67 3 114 5.90 26 8 4.27 24 8 4.76
68 3 114 6.43 28 8 5.68 30 10 4.03
69 3 108 18.24 76 12 6.32 33 11 4.73
70 3 114 43.82 109 9 6.65 27 9 4.11
71 3 115 11.68 40 12 7.50 36 12 5.20
72 3 108 9.33 40 11 795 37 10 3.14
73 3 114 62.65 144 8 8.28 39 13 5.11
74 3 117 65.27 120 11 8.58 33 11 6.19
75 3 112 44.91 135 17 9.35 48 16 5.12
76 3 121 9.47 34 10 9.98 36 11 4.68
77 3 108 14.19 56 18 10.52 51 17 7.20
78 3 127 63.87 121 15 10.78 42 14 10.38
79 3 117 66.03 105 18 11.20 51 17 7.30
80 3 115 33.41 91 20 11.23 54 18 7.87
81 3 114 47.40 99 18 15.50 55 18 6.28
82 3 114 350.67 602 - 22.00 81 27 15.65
83 3 125 350.68 486 - 23.92 102 11 7.66
84 3 114 13.90 40 9 2.97 18 6 1.96
85 3 165 119.34 131 9 428 18 6 6.49
86 3 132 9.18 30 8 4.83 24 8 454
87 3 192 65 52 64 12 6.82 21 7 7.67
88 3 121 1278 122 11 695 33 11 6.12
89 3 177 4761 90 12 10.33 33 11 7.89
90 3 165 352.67 344 - 13.33 39 13 9.94

A.2. EXPERIMENTAL DATA 197

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

91 3 173 350.88 180 - 16.02 45 15 16.93
92 3 168 351.38 362 - 21.90 42 14 9.85
93 3 160 350.48 226 - 24.70 71 12 17.27
94 3 151 35.05 69 18 25.32 52 17 16.25
95 3 144 73.64 73 30 27.55 82 24 12.14
96 3 125 22.83 63 14 29.23 101 13 4.87
97 3 183 96.97 70 20 29.84 52 13 13.03
98 3 123 351.20 360 - 32.33 103 21 11.80
99 3 160 356.25 197 - 34.15 78 26 8.04
100 3 162 351.37 269 - 44.85 92 15 13.99
101 3 172 351.35 250 - 120.14 209 18 16.01
102 4 104 11.35 43 10 2.85 18 6 1.85
103 4 103 10.45 40 10 3.00 21 7 1.77
104 4 109 154.62 327 10 3.25 21 7 2.24
105 4 104 4.08 21 7 4.87 24 8 1.96
106 4 108 14.33 52 10 5.30 30 10 5.37
107 4 105 9.93 40 12 5.50 33 .11 4.05
108 4 103 11.23 43 10 5.50 30 10 2.69
109 4 107 12.75 46 15 6.53 36 12 4.28
110 4 105 13.45 49 13 6.72 36 12 4.79
111 4 109 9.97 39 13 6.88 36 12 5.95
112 4 105 43.12 130 15 7.60 39 13 5.86
113 4 109 8.77 37 12 9.00 37 11 3.34
114 4 100 10.08 41 13 10.95 50 15 4.02
115 4 108 350.13 962 - 12.30 57 19 6.05
116 4 109 353.25 769 - 13.52 49 15 8.37
117 4 107 350.12 1035 - 15.40 66 22 5.95
118 4 110 350.43 720 - 16.57 58 19 8.71
119 4 107 19.67 67 22 18.87 68 22 7.62
120 4 115 4.47 21 7 2.95 18 6 1.36
121 4 109 121.52 258 11 3.62 24 8 2.05
122 4 106 8.30 33 10 5.45 30 10 2.96
123 4 115 15.67 49 14 6.32 33 11 4.51
124 4 114 17.08 55 12 7.60 39 13 7.20
125 4 114 350.43 886 - 7.78 36 12 8.54
126 4 104 8.85 35 11 7.92 34 11 5.06
127 4 117 8.00 30 10 9.47 30 10 1.37
128 4 114 8.47 33 10 9.80 40 12 1.70
129 4 113 11.15 40 11 10.98 42 11 1.83
130 4 112 25.30 77 23 12.02 54 18 9.24
131 4 107 22.03 71 19 14.15 55 18 7.74
132 4 111 352.26 505 - 15.50 56 12 2.42
133 4 118 129 74 196 27 18.38 69 23 10.73
134 4 113 354.67 440 - 19.73 71 23 12.59
135 4 117 24.10 66 21 27.99 83 23 11.79

198 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NoLIMIT Analogical NoLIMIT

Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval

Time Length Time Length Time

136 4 115 28.58 83 18 28.80 85 17 7.54

137 4 115 350.83 557 - 45.53 143 21 10.41

138 4 110 350.42 694 - 114.21 347 22 8.73

139 4 105 8.00 33 10 2.52 18 6 1.83

140 4 114 5.07 22 7 3.78 21 7 2.62

141 4 127 350.50 668 - 3.82 21 7 3.40

142 4 111 4.77 24 8 5.15 24 8 2.24

143 4 115 14.20 46 12 6.18 21 7 2.34

144 4 121 16.72 50 11 7.52 24 8 3.03

145 4 122 13.85 47 15 8.90 39 13 5.62

146 4 112 17.13 60 14 9.47 42 14 5.97

147 4 116 9.92 37 11 10.07 43 14 4.04

148 4 106 95.05 248 19 10.15 51 17 9.80

149 4 110 57.98 133 17 11.00 48 16 7.59

150 4 108 90.01 181 20 12.05 54 18 7.70

151 4 118 18.35 56 18 12.95 54 18 7.79

152 4 117 19.47 60 19 16.28 59 18 6.20

153 4 109 351.35 845 - 18.53 58 19 8.49

154 4 125 350.83 518 - 22.72 67 22 11.06

155 4 107 81.61 183 12 23.03 91 12 2.46

156 4 121 351.97 562 - 25.98 70 23 8.62

157 5 108 9.32 37 11 3.57 21 7 2.01

158 5 119 13.83 46 12 3.62 21 7 3.87

159 5 111 11.28 41 13 4.83 27 9 1.69

160 5 120 18.40 52 15 5.57 30 10 4.29

161 5 131 351.18 660 - 5.77 30 10 9.80

162 5 109 350.45 528 - 8.58 45 15 4.55

163 5 110 14.00 47 15 9.92 45 15 3.69

164 5 132 17.07 53 17 10.25 42 14 10.46

165 5 114 350.75 1020 - 10.92 52 16 9.11

166 5 131 10.32 34 7 11.05 34 11 3.28

167 5 121 14.70 49 15 11.95 51 17 10.11

168 5 117 11.07 40 13 12.35 46 12 2.42

169 5 119 350.30 634 - 13.42 54 18 13.73

170 5 122 345.54 358 24 14.25 57 19 11.56

171 5 120 36.43 90 29 24.47 90 30 18.29

172 5 124 149.85 172 25 26.12 61 16 7.39

173 5 132 350.90 251 - 28.31 89 29 16.90

174 5 135 350.15 283 - 43ý29 116 37 26.17

175 5 110 388 21 7 330 21 7 1.25

176 5 105 1567 57 14 6.82 36 12 3.54

177 5 107 50.80 161 11 768 39 13 510

178 5 104 973 43 13 853 37 12 2.09

179 5 110 35032 733 - 9J48 48 16 760

180 5 103 10.83 45 13 10.25 46 13 1.51

A.2. EXPERIMENTAL DATA 199

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
STime Length Time Length Time

181 5 106 138.46 309 16 10.73 45 14 3.76
182 5 106 10.10 41 13 10.92 47 15 1.91
183 5 108 23.52 62 14 11.60 42 14 12.40
184 5 110 19.05 62 17 11.87 51 16 5.09
185 5 108 350.12 803 - 12.08 48 16 8.59
186 5 106 15.67 55 17 12.98 55 18 9.94
187 5 113 350.10 459 - 14.70 57 19 7.76
188 5 107 350.67 780 - 16.25 54 15 6.33
189 5 110 17.78 54 14 17.37 53 15 4.93
190 5 104 350.52 900 - 17.57 66 19 9.62
191 5 110 353.02 342 - 27.60 81 26 13.29
192 5 103 351.23 963 - 30.38 94 31 8.16
193 5 112 350.85 666 - 37.47 187 20 10.24
194 5 123 29.70 85 6 2.98 18 6 9.35
195 5 124 15.77 47 11 7.10 33 11 4.25
196 5 132 34.40 88 9 7.40 33 11 6.54
197 5 113 350.32 661 - 8.93 39 13 10.68
198 5 107 96.25 221 14 9.85 40 13 3.42
199 5 130 10.93 39 13 10.08 36 12 8.41
200 5 113 351.57 977 - 11.50 46 15 13.02
201 5 136 13.20 42 14 12.22 45 15 16.69
202 5 114 352.78 809 - 14.03 49 16 10.65
203 5 128 25.57 68 20 15.57 56 16 15.01
204 5 136 29.53 77 15 16.50 47 15 10.25
205 5 119 351.32 769 - 19.43 61 18 10.40
206 5 132 350.05 479 - 21.04 77 25 17.36
207 5 129 352.05 552 - 22.37 72 24 9.94
208 5 111 350.83 549 - 25.92 80 19 9.77
209 5 129 24.27 70 23 27.09 105 24 14.99
210 5 112 14.50 47 15 28.09 88 13 5.17
211 5 135 351.02 670 - 32.46 100 18 13.60
212 5 136 351.03 418 - 39.16 Ill 36 30.89
213 6 106 10.98 39 13 6.27 33 11 2.96
214 6 115 19.73 50 12 6.63 27 9 2.46
215 6 101 9.73 43 13 6.78 39 13 3.22
216 6 113 8.68 36 12 6.87 36 12 3.95
217 6 113 4.50 21 7 7.53 36 12 2.36
218 6 113 20.87 58 15 9.10 39 13 4.85
219 6 112 11.73 43 14 9.48 43 13 8.50
220 6 106 350.40 930 - 10.48 48 16 4.97
22i 1 6 108 15.50 54 17 10.90 48 16 3.46
222 6 108 35.70 115 19 11.92 47 13 4.17
223 6 116 350.03 590 - 13.92 54 18 8.74
224 6 103 18.10 64 21 14.33 63 21 7.28
225 6 106 14.40 54 16 15.22 62 16 7.35

200 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY
Num State Searci Nodes Sol Replay Nodes Sol Retrieval

Time Length Time Length Time
226 6 115 78.18 130 38 24.09 90 30 17.82
227 6 102 30.57 86 28 24.75 93 31 11.11
228 6 104 39.70 119 29 25.93 95 31 9.00
229 6 112 351.70 294 - 33.00 101 32 19.15
230 6 112 350,30 603 - 34.70 117 21 8.36
231 6 131 3.35 18 6 3.48 18 6 0.90
232 6 112 10.92 40 9 4.65 27 9 1.49
233 6 119 8.02 33 11 4.77 27 9 252
234 6 113 5.83 28 9 6.32 30 10 2.41
235 6 114 293.87 563 14 6.45 30 10 367
236 6 124 10.48 39 13 7.68 36 12 11.61
237 6 123 19.37 52 16 9.27 39 13 4.60
238 6 118 27.18 73 16 9.92 45 15 9.60
239 6 114 31.07 79 24 10.07 48 16 11,04
240 6 116 350.82 718 - 11.87 54 18 5.69
241 6 127 350.62 547 - 14.37 51 17 14.87
212 6 123 23.77 62 18 16.38 63 16 2.96
243 6 120 49.08 102 31 29.97 84 27 14.69
244 6 123 350.85 682 - 33.33 67 20 4.15
245 6 109 82.03 127 41 37.04 111 36 17.39
246 6 122 350.18 463 - 44.78 128 20 8.61
247 6 123 352.00 336 - 47.99 109 35 15.32
248 6 122 350.10 462 - 73.82 173 28 13.79
249 6 123 351.00 624 - 110.51 333 18 8.15
250 6 115 9.28 34 10 6.07 30 10 1.27
251 6 144 350.87 431 - 6.78 27 9 5.54
252 6 128 350.97 423 - 9.02 39 13 5.90
253 6 125 350.57 302 - 9.63 42 14 9.84
254 6 148 350.37 260 - 13.97 45 15 17.67
255 6 120 24.48 69 19 17.07 58 19 6.96
256 6 122 29,25 72 19 18.13 37 12 751
257 6 129 352.32 516 - 20.70 61 20 8.54
258 6 118 350.97 376 - 24.35 74 24 9.09
259 6 140 350.37 285 - 25.17 69 22 12.56
260 6 140 352.15 243 - 26.00 66 22 16.62
261 6 141 352.73 164 - 26.73 84 28 20.59
262 6 128 35120 522 - 30.20 61 20 11.79
263 6 125 352.52 543 - 51.86 142 26 10.91
264 6 145 353.,9 227 - 60.12 84 28 34.31
265 6 130 350.72 235 - 90.10 193 33 21.89
966 6 135 355.10 161 - 96.45 178 38 31.91
267 7 108 14.78 49 8 4.62 24 8 2.40
268 7 104 13 23 48 10 4.98 30 10 2.58
269 7 109 6.63 31 10 5.58 30 10 3.36
270 7 108 16.75 60 14 7.98 39 13 7.66

A.2. EXPERIMENTAL DATA 201

Base-level NoLIMIT Analogical NoLIMIT

Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time LengthT Time

271 7 104 108.83 197 16 8.65 39 13 4.25

272 7 115 74.85 130 17 9.68 42 14 6.70

273 7 109 10.93 44 14 9.80 46 15 9.65

274 7 109 351.25 544 - 10.28 42 14 8.96

275 7 101 48.30 136 13 13.10 59 14 2.16

276 7 107 350.15 889 - 15.13 57 19 8.15

277 7 105 34.82 92 22 20.57 67 21 13.15
278 7 107 350.73 446 - 21.17 72 24 7.68

279 7 105 351.50 669 - 29.77 i11 35 6.42

280 7 113 352.97 392 - 32.22 102 25 10.20

281 7 111 352.60 442 - 40.64 144 29 11.86

282 7 112 352.57 318 - 169.77 343 40 17.12

283 7 104 10.25 42 12 3.20 21 7 1.90

284 7 105 12.73 46 11 3.28 21 7 1.08

285 7 104 4.08 21 7 3.53 21 7 2.21

286 7 100 5.47 27 9 4.68 27 9 1.55
287 7 106 9.52 37 9 4.88 27 9 1.35

288 7 104 10.38 39 9 4.98 30 10 2.28
289 7 105 8.73 36 10 5.28 30 10 1.14
290 -7 102 8.00 34 10 5.87 33 11 3.74

291 7 105 11.62 51 15 6.15 33 11 1.17
292 7 100 5.95 30 10 6.60 33 11 1.80

293 7 103 6.65 31 10 6.98 36 10 2.76
294 7 100 11.52 49 15 7.13 39 13 2.75
295 7 101 13.08 53 15 7.63 39 13 2.54
296 7 105 19.78 58 14 8.50 39 13 3.24
297 7 100 8.12 35 11 8.90 40 13 1.91
298 7 103 25.48 76 15 9.93 48 16 4.90
299 7 103 352.03 699 - 14.98 63 21 11.57

300 7 103 96.03 200 21 15.45 63 21 9.61
301 7 108 350.05 595 - 15.97 49 16 8.25
302 7 104 353.25 559 - 28.50 98 23 8.00
303 7 114 21.13 55 11 4.40 24 8 1.12
304 7 116 15.33 46 12 5.05 27 9 2.31
305 7 113 7.73 31 10 5.78 30 10 2.04
306 7 109 274.62 535 21 13.72 52 17 6.68
307 7 111 10.12 38 12 13.87 54 14 4.30
308 7 116 351.63 628 - 15.57 57 19 11.28
309 7 109 351.77 479 - 17.33 55 16 6.10
310 7 116 350.63 506 - 17.80 66 22 9.89

311 7 105 350.13 787 - 23.10 75 25 6.53

312 7 111 350.52 789 - 26.82 93 31 15.95
313 7 113 68.71 122 26 26.95 76 25 7.85
J14 7 108 29.25 89 29 27.82 93 31 11.19

315 7 116 351.63 311 - 31.83 85 26 9.76

202 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

316 7 107 45.82 106 34 34.57 101 31 10.84
317 7 113 358.32 298 - 39.08 113 36 14.63
318 7 111 121.35 281 30 61.58 174 23 8.46
319 7 120 352.60 271 - 88.16 165 36 21.26
320 7 114 353.03 505 - 126.35 224 29 13.88
321 8 101 10.23 41 10 4.48 27 9 0.91
322 8 100 9.25 43 14 9.78 47 15 1.54
323 8 104 350.27 749 - 14.85 57 17 3.56
324 8 106 30.40 87 25 19.70 72 24 10.29
325 8 112 76.92 143 18 19.72 65 17 7.91
326 8 110 350.50 548 - 22.21 83 27 16.75
327 8 110 350.45 753 - 24.70 87 28 5.91
328 8 108 350.77 978 - 24.75 85 28 5.74
329 8 110 350.90 647 - 25.58 89 28 12.57
330 8 103 350.42 794 - 28.22 88 29 8.26
331 8 109 350.50 481 - 28.56 103 34 13.60
332 8 110 350.10 572 - 28.67 115 28 14.59
333 8 112 351.28 437 - 33.34 112 31 12.76
334 8 104 42.40 109 35 33.78 112 37 9.84
335 8 105 352.48 532 - 48.39 172 36 10.01
336 8 102 9.52 45 15 5.63 33 11 1.99
337 8 111 24.70 64 14 5.65 30 10 2.37
338 8 106 16.53 55 14 7.02 36 11 3.29
339 8 106 350.30 973 - 9.37 42 14 3.90
340 8 109 23.22 67 14 13.18 40 13 2.50
341 8 123 352.63 367 - 17.27 57 19 13.73
342 8 121 350.78 792 - 20.13 69 23 16.08
343 8 114 350.67 631 - 20.85 63 12 3.51
344 8 120 350.10 638 - 21.10 93 31 23.39
345 8 109 352.37 493 - 24.82 71 23 9.69
346 8 106 352.48 399 - 25.20 82 27 5.69
347 8 113 351.33 445 - 26.09 102 34 15.61
348 8 117 351.03 419 - 27.09 92 30 13.39
349 8 111 350.77 776 - 34.63 103 17 6.01
350 8 109 350.58 764 - 45.75 166 24 13.29
351 8 109 350.25 656 - 53.85 152 27 11.07
352 8 109 352.88 648 - 55.17 150 46 15.49
353 8 106 350.97 512 - 66.68 187 31 12.59
354 8 102 12.75 48 15 10.28 45 15 4-37
355 8 111 353.85 565 - 10.78 48 16 6.84
356 8 ill 22.03 63 18 12.68 51 17 3.54
357 8 119 350.93 409 - 13.08 51 17 875
358 8 119 351.53 640 - 14.45 48 16 7.90
359 8 109 17.53 56 17 15.05 61 20 10.18
360 8 107 351.23 579 - 21.95 81 27 12.27

A.2. EXPERIMENTAL DATA 203

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sal RetrievalTime Length Time Length Time
361 8 119 352.57 247 - 22.08 60 20 9.69
362 8 109 351.48 440 - 22.17 68 22 10.15
363 8 116 352.42 369 - 22.80 69 23 14.39
364 8 114 350.70 454 - 23.46 74 24 14.64
365 8 121 355.32 238 - 25.78 55 18 10.69
366 8 115 351.85 409 - 26.90 88 29 16.01
367 8 111 350.30 551 - 31.85 99 32 17.32
368 8 121 350.48 407 - 34.30 96 32 15.68
369 8 113 351.72 451 - 34.87 102 33 15.65
370 8 114 352.25 337 - 43.89 103 34 13.00
371 8 108 350.23 402 - 86.47 177 53 20.99
372 8 122 354.07 234 - 117.22 130 30 11.34
373 8 112 353.32 389 - 122.84 269 46 19.94
374 9 112 350.40 835 - 10.83 48 16 11.09
375 9 106 45.03 110 17 12.05 48 16 3.69
376 9 114 350.08 568 - 15.33 57 19 9.71
377 9 122 352.00 446 - 16.66 75 25 23.65
378 9 108 287.85 878 18 17.75 58 17 7.45
379 9 104 21.50 74 24 19.42 76 25 10.82
380 9 122 29.45 90 27 19.90 67 22 15.45
381 9 110 352.70 525 - 20.30 69 23 12.98
382 9 108 350.08 372 - 24.06 93 30 16.48
383 9 106 350.10 584 - 26.05 80 26 9.36
384 9 118 354.15 738 - 27.66 117 39 24.27
385 9 116 350.42 490 - 27.99 98 30 20.82
386 9 106 350.60 562 - 29.25 84 28 7.24
387 9 113 350.17 509 - 30.23 112 31 15.33
388 9 114 350.25 381 - 51.59 141 47 30.30
389 9 112 350.15 900 - 117.78 332 32 20.48
390 9 110 28.38 73 16 9.93 39 13 5.96
391 9 118 204.35 328 23 16.52 66 22 11.99
392 9 125 351.45 391 - 18.37 64 21 15.40
393 9 113 350.73 573 - 21.55 84 28 18.06
394 9 125 350.05 418 - 22.37 67 22 15.75
395 9 119 351.42 631 - 25.39 85 26 27.46
396 9 130 350.12 294 - 31.19 95 31 15.64
397 9 119 355.38 314 - 34.73 91 30 10.86
398 9 112 351.65 422 - 35.83 73 21 5.05
399 9 130 350.77 509 - 36.74 122 38 21.41
400 9 110 351.27 398 - 49.79 147 39 22.08
401 9 113 350.60 382 - 62.56 129 40 18.66
402 9 107 350.52 371 - 124.62 247 41 24.02
403 9 118 351.83 387 - 146.79 227 45 32.21
404 9 103 6.70 33 11 6.47 33 11 1.99
405 9 108 100.26 177 14 9.40 39 13 3.60

204 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

406 9 112 20.17 65 21 10.07 45 15 4.51
407 9 109 14.27 46 15 17.37 52 17 6.68
408 9 113 351.55 383 - 17.42 55 18 8.61
409 9 119 350.63 891 - 18.03 73 22 19.35
410 9 122 350.87 400 - 23.60 66 21 11.20
411 9 109 351.83 575 - 25.97 81 26 9.01
412 9 120 350.37 739 - 29.50 96 32 26.81
413 9 108 351.85 537 - 29.72 82 27 7.18
414 9 110 350.72 417 - 30.33 76 25 13.61
415 9 108 97.92 171 35 32.01 105 32 12.84
416 9 119 352.78 325 - 33.64 97 31 20.14
417 9 110 351.35 391 - 36.72 119 34 18.80
418 9 120 351.17 628 - 37.76 120 31 13.05
419 9 109 350.23 264 - 39.56 107 35 15.78
420 9 118 152.34 194 40 48.96 143 34 26.12
421 9 116 350.18 455 - 74.61 154 43 24.62
422 9 115 350.48 290 - 80.98 141 46 26.61
423 9 125 352.33 255 - 88.36 148 37 27.56
424 1 131 33.23 105 8 5.12 24 8 3.53
425 1 129 13.59 47 8 8.37 25 8 3.24
426 1 152 10.25 29 8 8.47 27 7 2.62
427 1 156 9.87 28 8 8.62 25 8 4.44
428 1 121 9.95 35 9 5.12 27 9 6.73
429 1 121 10.96 39 7 7.42 22 7 2.24
430 2 138 8.69 31 6 5.65 18 6 3.47
431 2 149 32.43 86 10 5.85 24 8 6.78
432 2 151 12.47 32 8 6.12 24 8 9.38
433 2 113 41.57 81 14 7.55 33 11 5.14
434 2 139 14.79 46 13 7.83 36 12 8.56
435 2 131 7.32 27 9 8.20 31 10 3.15
436 2 126 7.70 27 7 8.37 21 7 2.66
437 2 137 35.24 74 19 9.60 39 13 11.19
438 2 141 16.75 44 14 9.88 39 13 5.71
439 2 123 9.30 33 11 11.79 46 10 3.45
440 2 161 19.78 57 9 13.80 30 8 2.81
441 2 148 16.31 47 8 14.60 44 8 3.17
442 2 149 71.53 89 23 35.27 71 17 10.49
443 2 125 64.11 115 9 3.23 21 7 10.01
444 2 120 66.83 132 7 3.33 21 7 6.45
445 2 111 6.97 31 10 3.65 21 7 2.64
446 2 109 2358 95 11 3.93 24 8 2.41
447 2 116 42.29 112 13 7.28 39 13 6.21
448 2 112 20.26 86 10 808 31 1o 5.14
449 2 109 350.47 785 - 10.50 34 11 7.01

450 2 106 17.33 67 16 11.62 50 15 4.00

A.2. EXPERIMENTAL DATA 205

Base-level NoLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

451 2 106 35.23 115 11 12.50 52 11 2.25
452 2 118 43.58 130 16 17.23 72 16 8.98
453 2 116 68.94 141 19 17.55 58 15 8.54
454 2 103 31.36 100 20 18.48 78 19 8.69
455 2 108 66.30 150 11 39.66 197 11 2.72
456 3 137 5.50 24 8 3.07 18 6 2.51
457 3 130 13.27 39 6 3.43 18 6 2.55
458 3 138 6.97 25 8 4.77 24 8 2.49
459 3 128 11.83 41 11 7.48 28 9 3.78
460 3 117 122.78 396 15 7.50 34 11 6.31
461 3 136 336.73 520 15 8.60 27 9 7.30
462 3 135 350.95 409 - 9.65 39 13 10.69
463 3 147 350.77 534 - 10.15 42 14 11.65
464 3 125 89.92 322 13 10.40 40 13 7.12
465 3 144 351.60 503 - 11.12 36 12 17.60
466 3 124 13.15 42 13 11.27 40 13 6.01
467 3 141 19.18 54 16 12.17 48 16 10.43
468 3 145 350.58 342 - 13.25 51 17 19.28
469 3 128 12.58 40 13 15.60 43 13 7.64
470 3 134 193.22 286 19 19.08 60 20 15.02
471 3 127 15.92 45 ,14 25.52 74 20 14.30
472 3 111 8.20 34 8 3.75 24 8 1.50
473 3 113 15.78 46 10 5.77 27 9 5.77
474 3 114 7.73 36 11 6.15 27 8 3.42
475 3 114 10.78 36 12 7.98 39 13 7.97
476 3 126 350.82 537 - 9.60 42 14 12.29
477 3 107 281.45 831 16 10.05 46 15 7.87
478 3 107 350.27 1054 - 11.88 48 14 3.19
479 3 115 350.67 645 - 12.20 54 18 10.35
480 3 120 350.77 741 - 13.58 43 14 8.66
481 3 114 65.26 147 18 16.58 62 18 12.06
482 3 120 350.18 918 - 18.52 50 11 9.84
483 3 126 351.27 460 - 19.87 47 15 11.53
484 3 113 351.23 898 - 129.39 441 24 12.30
485 4 123 14.20 43 12 5.58 27 9 2.93
486 4 130 350.27 446 - 6.32 30 10 5.22
487 4 150 351.25 523 - 6.38 27 9 14.50
488 4 131 350.85 526 - 8.28 36 12 6.87
489 4 141 350.87 388 - 8.53 36 12 11.82
490 4 139 350.45 604 - 9.18 36 12 9.44
491 4 119 13.47 46 15 9.60 45 15 6.35
492 4 139 60.48 175 10 10.15 31 10 10.28
493 4 130 23.23 63 16 13.67 47 15 6.43
494 4 143 351.62 435 - 14.00 43 14 9.00
495 4 133 16.63 52 17 15.13 56 18 10.55

206 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

496 4 156 350.20 413 - 15.85 42 14 14.30
497 4 124 17.43 47 15 15.88 54 15 4.74
498 4 139 350.92 411 - 16.35 57 19 19.18
499 4 139 26.48 58 18 23.21 69 18 8.75
500 4 146 296.83 295 33 26.39 62 20 17.82
501 4 153 110.40 116 28 46.33 97 29 19.36
502 4 122 25.15 64 19 5.37 27 9 4.20
503 4 131 9.33 34 9 5.58 27 9 7.42
504 4 134 10.02 34 8 6.17 24 8 5.25
505 4 139 350.25 361 - 6.40 27 9 7.74
506 4 132 351.02 348 - 12.25 45 15 4.90
507 4 117 40.00 92 16 12.27 56 13 4.91
508 4 134 350.68 339 - 12.85 45 15 14.23
509 4 150 351.00 249 - 16.92 54 18 22.05
510 4 144 350.47 369 - 18.45 57 19 15.82
511 4 133 353.02 313 - 22.47 63 18 16.11
512 4 134 350.77 379 - 25.08 71 23 15.54
513 4 131 118.53 247 21 25.32 86 24 14-52
514 4 119 350.62 402 - 27.27 87 27 15.51
515 4 131 351.97 297 - 32.55 87 29 18.49
516 4 148 351.77 279 - 45.97 133 32 10.39
517 4 130 353.83 272 - 47.58 122 22 15.77
518 4 158 353.65 235 - 100.05 202 26 12.83
519 5 108 6.97 30 8 4.48 24 8 1.24
520 5 114 7.62 28 6 5.03 24 8 270
521 5 124 351.70 485 - 7.02 33 11 5.79
522 5 140 351.47 456 - 9.45 39 13 9.59
523 5 125 114.33 227 19 9.55 44 11 11 49
524 5 119 350.58 440 - 11.27 51 17 7.59
525 5 151 24.97 62 14 13.52 45 15 6.76
526 5 127 350.63 700 - 15.23 58 19 11.37
527 5 167 28.05 58 17 15.75 48 16 14.00
528 5 138 350.47 496 - 16.94 66 22 22.75
529 5 118 352.85 521 - 19.98 101 27 !8.00
530 5 145 351.50 453 - 24.11 80 26 26.20
531 5 154 351.30 296 - 26.71 74 20 13.73
532 5 142 352.15 427 - 29.19 94 26 16.59
533 5 123 350.90 460 - 30.30 82 27 10.29
534 5 116 6.32 27 8 4.42 24 8 4.26
535 5 110 10.58 46 15 6.10 33 11 4.65
536 5 103 13.87 55 14 6.15 33 11 3.01
537 5 110 10.85 40 8 6,98 24 8 2.49
538 b 118 15-88 53 13 7.50 36 12 10.91
539 5 117 350.32 582 - 8.13 39 13 7.39
540 5 127 5.23 21 7 8.43 21 7 3.31

A.2. EXPERIMENTAL DATA 207

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

541 5 110 350.98 704 - 8.88 36 12 4.73
542 5 115 351.50 655 10 9.37 30 10 5.28
543 5 107 28.15 77 17 9.38 37 12 3.45
544 5 102 68.64 164 17 9.88 51 17 5.10
545 5 107 350.62 568 - 13.15 54 16 16.88
546 5 113 14.77 50 14 15.08 44 14 7.65
547 5 115 351.32 523 - 15.48 60 20 12.08
548 5 123 351.17 550 - 21.92 55 18 12.85
549 5 117 44.03 88 20 23.08 61 20 12.00
550 5 113 29.08 76 25 27.67 74 24 12.21
551 5 113 351.27 1012 - 39.95 109 20 8.40
552 6 100 4.72 22 7 2.97 21 7 1.69
553 6 101 10.47 50 14 3.00 21 7 1.64
554 6 102 8.03 34 8 3.78 24 8 1.09
555 6 109 120.79 273 9 4.25 27 9 4.22
556 6 107 48.10 134 10 5.48 30 10 3.49
557 6 110 14.45 51 13 6.07 33 11 2.65
558 6 107 10.68 42 14 7.43 39 13 5.87
559 6 106 350.73 561 - 8.93 42 14 5.57
560 6 112 23.33 72 24 10.70 51 17 5.85
561 6 108 351.92 516 - 12.55 54 18 12.36
562 6 107 10.13 38 12 12.72 52 12 3.44
563 6 109 75.73 177 18 14.85 52 17 7.16
564 6 113 350.60 664 - 15.53 63 21 14.55
565 6 106 350.25 860 - 34.44 164 14 5.30
566 6 110 45.80 134 18 41.74 167 20 7.57
567 6 111 350.92 414 - 49.78 165 31 15.95
568 6 ill 351.35 680 - 50.17 188 19 9.80
569 6 108 351.92 604 - 94.71 274 19 7.15
570 6 113 25.70 66 10 3.72 21 7 1.08
571 6 111 19.83 58 11 3.87 21 7 2.33
572 6 106 8.22 34 11 4.22 24 8 1.76
573 6 108 351.23 730 - 6.92 36 12 3.21
574 6 107 17.07 59 16 9.00 42 14 5.44
575 6 108 70.07 151 15 10.62 46 14 5.99
576 6 110 162.50 293 15 10.63 45 15 5.11
577 6 113 350.75 672 - 10.67 42 14 7.02
578 6 107 28.07 88 20 13.20 57 19 7.05
579 6 119 350.77 493 - 14.77 57 19 11.80
580 6 121 351.13 299 - 15.97 57 19 10.61
581 6 109 19.77 64 17 16.24 58 16 3.81
582 6 105 353.42 623 - 17.95 69 20 4.46
583 6 117 352.45 558 - 20.88 68 16 4.05
584 6 117 350.08 510 - 27.41 93 20 14.27
585 6 107 351.50 417 - 33.67 119 39 14.74

208 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

586 6 117 351.92 342 - 78.20 157 25 10.66
587 7 105 12.73 49 16 5.33 30 10 2.26
588 7 100 7.07 34 11 5.83 33 11 1.50
589 7 101 6.90 32 10 6.13 38 10 1.56
590 7 105 11.33 45 15 6.58 33 11 4.07
591 7 102 9.30 42 14 10.00 45 14 2.25
592 7 107 213.70 775 16 10.67 54 18 9.40
593 7 109 81.35 242 19 11.65 51 17 10.34
594 7 104 352.00 1075 - 14.88 61 20 9.00
595 7 111 351.70 414 - 17.03 63 21 10.70
596 7 111 350.08 708 - 18.57 63 21 9.24
597 7 103 29.47 102 26 20.17 73 24 6.07
598 7 109 23.55 71 22 23.57 65 21 9.37
599 7 106 38.20 100 31 37.35 97 31 13.77
600 7 107 350.42 418 - 37.51 114 37 18.60
601 7 103 51.73 125 38 47.53 110 35 6.90
602 7 112 5.72 27 9 5.30 27 9 1.71
603 7 106 17.85 57 14 5.60 30 10 1.92
604 7 110 48.87 116 14 6.73 33 11 3.87
605 7 106 19.70 65 17 8.83 39 13 4.20
606 7 112 13.50 46 13 10.83 40 13 6.15
607 7 116 150.94 309 15 11.15 46 15 8.77
608 7 113 25.00 75 17 11.23 54 18 11.76
609 7 105 351.37 660 - 15.52 58 19 6.01
610 7 109 350.08 847 - 15.93 63 20 11.79
611 7 110 350.07 602 - 16.75 61 20 11.61
612 7 119 351.67 654 - 17.02 78 26 25.85
613 7 113 350.63 516 - 18.12 72 24 14.76
614 7 113 350.62 486 - 18.27 58 19 7.13
615 7 114 350.12 530 - 20.62 69 23 9.29
616 7 114 22.25 62 18 21.82 61 20 8.12
617 7 104 51.28 120 38 32.03 117 38 11.32
618 8 104 6.87 33 11 6.08 33 11 4.00
619 8 114 11.88 40 12 7.48 33 11 2.15
620 8 115 75.75 111 23 8.52 39 13 3.52
621 8 107 12.67 47 14 12.60 46 14 3.87
622 8 109 1903 55 18 13.88 51 17 3.70
623 8 112 22.63 62 17 14.95 54 18 3.64
624 8 115 35195 581 - 19.23 66 22 10.71
625 8 110 14.13 49 14 21.50 76 17 3.03
626 8 ill 352.33 467 - 22-05 71 18 11.02
627 8 108 350.97 398 - 24.02 67 22 9.16
628 8 115 35038 399 2987 82 22 13.57
629 8 118 350.20 469 - 30.53 74 24 1282
630 8 110 353.10 563 - 34.95 117 28 13.07

210 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NOLIMIT Analogical NOLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

676 9 115 34.07 73 11 11.13 33 11 2.92
677 9 114 300.73 773 18 11.95 51 17 8.15
678 9 105 208.70 491 18 14.38 51 17 7.44
679 9 120 350.25 490 - 16.60 57 19 9.60
680 9 116 350.13 338 - 19.00 60 20 10.21
681 9 109 111.63 217 30 21.55 90 30 18.94
682 9 116 352.80 269 - 24.34 73 24 15.34
683 9 105 32.48 88 29 28.57 91 30 9.07
684 9 113 356.68 315 - 31.84 84 28 15.29
685 9 110 350.07 506 - 34.27 89 24 8.61
686 9 117 352.62 248 - 44.03 105 35 25.36
687 9 112 351.58 403 - 44.25 121 37 18.70
688 9 126 352.33 233 - 49.40 113 29 29.14
689 9 115 352.18 226 - 53.52 126 36 17.79
690 9 109 351.55 448 - 54.74 126 40 20.00
691 9 110 355.18 332 - 57.04 139 45 18.91
692 9 122 351.08 194 - 90.12 147 35 24.87
693 9 119 353.23 220 - 110.21 181 42 18.08
694 9 119 351.58 393 - 128.46 249 37 20.91
695 10 106 13.28 45 10 3.28 21 7 0.87
696 10 102 5.07 27 9 4.05 24 8 2.17
697 10 104 6.62 33 11 6.07 33 11 1.08
698 10 102 26.15 82 15 14.67 56 16 5.05
699 10 105 352.40 557 - 14.68 60 20 3.67
700 10 107 355.80 449 - 17.70 67 22 5.34
701 10 105 350.22 463 - 18.78 66 22 7.39
702 10 106 351.98 398 - 21.58 69 23 7.76
703 10 112 351.85 364 - 23.98 81 27 13.84
704 10 110 352.85- 479 - 27.94 114 38 13.39
705 10 111 350.22 459 - 28.75 109 35 16.54
706 10 111 354.40 590 - 30.63 74 23 9.31
707 10 108 351.75 432 - 35.60 116 37 17.04
708 10 111 41.00 90 24 35.90 88 21 6.50
709 10 103 280.03 601 25 36.68 103 24 3.35
710 10 111 351.02 310 - 40.36 107 32 12.41
711 10 108 355.47 366 - 42.91 123 38 16.50
712 10 115 350.48 432 - 51.86 128 42 27.73
713 10 108 350.23 311 - 59.19 129 41 20.20
714 10 110 314.81 249 31 70.79 158 33 12.44
715 10 107 13.27 49 16 14.80 47 15 5.53
716 10 110 350.92 549 - 15.83 52 17 8.00
717 10 108 27.62 73 22 19.23 66 22 8.11
718 10 102 91.92 172 22 21.17 73 24 7.89
719 10 107 21.05 70 23 28.38 76 23 3.94
720 10 117 350.07 365 - 28.91 57 19 9.73

A.2. EXPERIMENTAL DATA 209

Base-level NOLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
_ Time Length Time Length Time

631 8 106 96.66 219 20 38.83 137 18 3.01
632 8 119 351.95 208 - 42.38 89 29 20.11
633 8 111 350.35 422 - 117.91 341 35 13.51
634 8 111 350.>r 642 - 220.06 507 26 9.09
635 8 107 15.42 52 11 3.42 21 7 1.19
636 8 112 37.15 86 16 5.88 30 10 2.49
637 8 104 13.97 46 13 6.00 36 12 4.28
638 8 123 351.63 375 - 8.73 39 13 11.19
639 8 104 11.83 45 15 9.58 45 15 3.33
640 8 107 350.65 705 - 11.57 54 18 6.28
641 8 107 351.12 709 - 13.55 60 20 11.57
642 8 106 112.30 218 16 13.72 56 15 5.62
643 8 106 350.85 656 - 13.97 54 18 7.20
644 8 120 351.38 306 - 23.56 76 25 14.86
645 8 123 21.25 60 20 23.63 67 18 9.94
646 8 110 352.08 654 - 25.20 96 31 19.80
647 8 111 352.63 416 - 26.26 90 29 12.15
648 8 117 350.82 375 - 26.30 73 24 15.06
649 8 102 44.57 118 23 26.72 76 25 10.23
650 8 116 351.12 366 - 27.25 71 20 14.65
651 8 114 352.20 706 - 31.98 98 32 26.52
652 8 113 350.07 382 - 34.34 114 37 24.80
653 8 118 351.85 384 - 44.19 88 18 6.12
654 8 113 136.52 183 35 50.89 140 35 17.41
655 9 105 17.87 56 12 5.02 27 9 1.89
656 9 104 10.03 43 12 7.88 33 11 2.14
657 9 106 52.95 158 17 11.18 54 18 6.19
658 9 108 350.07 669 - 11.50 51 17 5.04
659 9 102 12.27 49 16 13.23 52 17 4.89
660 9 117 350.27 815 - 15.68 60 16 5.49
661 9 120 107.64 203 15 16.70 55 18 4.46
662 9 115 353.42 514 - 19.23 69 20 13.11
663 9 109 30.40 106 20 25.93 84 19 9.39
064 9 109 350.27 480 - 26.57 84 28 11.10
665 9 105 48.25 114 35 28.32 99 33 966
666 9 109 351.60 358 - 29.25 82 27 11.04
667 9 108 38.62 107 33 30.34 103 33 14.40
668 9 117 351.32 489 - 30.39 97 32 21.51
669 9 108 350.25 496 - 33.54 122 40 20.16
670 9 109 350.17 393 - 38.74 115 38 26.61
671 9 110 35063 432 - 51.89 122 29 12.14
672 9 122 35090 248 - 63.21 137 36 26.84
673 9 115 350.98 408 - 69.11 167 40 17.52
674 9 123 351-30 374 - 104.97 196 36 29.31
675 9 111 35.65 106 18 10.12 48 16 7.87

A.2. EXPERIMENTAL DATA 211

Base-level NoLIMIT Analogical NoLIMIT

Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

721 10 110 350.37 399 - 30.83 105 27 9.45
722 10 105 351.70 592 - 31.60 114 37 15.81
723 10 114 351.98 309 - 36.62 107 31 18.58
724 10 113 350.83 417 - 37.01 104 27 8.25
725 10 113 351.62 355 - 37.76 115 30 16.66
726 10 119 353.62 214 - 55.59 115 37 31.19
727 10 111 351.20 325 - 55.79 137 42 28.54
728 10 111 351.80 307 - 69.34 138 45 27,55
729 10 119 352.32 160 - 71.80 127 42 26.41
730 10 113 350.82 313 - 73.62 143 32 20.84
731 10 110 352.95 218 - 77.44 160 36 16.60
732 10 104 352.73 465 - 110.46 233 46 15.48
733 10 116 353.62 324 - 168.34 238 47 31.72
734 10 120 353.67 202 - 206.73 257 51 34.14
735 10 101 8.48 36 11 5.80 33 11 3.81
736 10 101 12.48 51 16 11.75 51 17 9.16
737 10 104 181.59 309 20 12.47 54 18 11.59
738 10 106 355.17 554 - 14.63 60 20 11.94
739 10 115 31.48 74 20 21.82 54 18 8.77
740 10 124 350.22 544 - 23.73 68 17 13.40
741 10 101 86.04 190 27 25.65 87 27 8.73
742 10 115 47.18 103 27 26.10 84 26 15.71
743 10 109 350.52 516 - 29.32 82 20 5.54
744 10 109 350.35 834 - 30.09 117 38 19.14
745 10 106 351.58 690 - 30.27 107 35 12.62
746 10 117 351.72 324 - 30.90 95 31 18.20
747 10 112 351.00 422 - 34.14 108 36 24.89
748 10 121 351.23 316 - 39.65 114 37 20.33
749 10 117 351.78 405 - 50.47 126 41 30.42
750 10 115 350.98 447 - 53.56 158 38 21.37
751 10 114 350.03 312 - 54.94 132 40 22.86
752 10 113 350.18 476 - 65.60 146 46 35.66
753 10 114 352.55 476 - 70.01 163 50 27.63
754 10 109 365.05 332 - 77.01 174 42 20.18
755 10 112 5.58 27 9 5.37 27 9 1.54
756 10 102 15.47 56 16 11.82 42 14 4.29
757 10 103 18.07 68 21 17.52 67 19 4.02
758 10 117 350.65 505 - 25.00 72 24 13.69
759 10 123 352.72 428 - 26.24 75 24 26.34
760 10 121 351.90 419 - 28.71 94 29 17.80
761 10 109 350.48 493 - 29.27 93 29 10.84
762 10 115 353.85 343 - 32.53 81 24 10.50
763 10 115 351.15 436 - 33.46 102 33 23.41
764 10 108 353.28 329 - 36.99 105 34 16.31
765 10 106 351.53 464 - 40.84 136 31 13.20

212 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

766 10 110 162.53 304 35 53.44 150 36 20.27
767 10 123 358.97 202 - 55.04 99 32 24.24
768 10 116 350.37 242 - 55.91 113 37 18.21
769 10 118 351.07 252 - 56.28 115 37 23.85
770 10 128 350.90 267 - 65.47 120 39 41.24
771 10 121 351.02 270 - 68.26 156 35 19.13
772 10 114 351.85 347 - 84.25 168 39 21.90
773 10 125 350.28 229 - 89.88 157 36 14.07
774 10 108 17.68 58 16 6.53 33 11 2.49
775 10 106 34.02 80 22 16.73 51 17 7.13
776 10 128 351.48 422 - 18.31 72 24 18.95
777 10 113 351.23 586 - 19.61 77 25 18.50
778 10 122 350.52 545 - 22.79 82 26 23.52
779 10 111 351.47 486 - 25.78 84 28 16.00
780 10 128 354.58 259 - 27.14 73 24 17.67
781 10 109 353.47 369 - 29.37 69 23 10.00
782 10 126 350.67 465 - 32.05 96 32 34.49
783 10 114 350.07 328 - 32.05 82 25 16.64
784 10 121 354.22 327 - 35.76 85 28 18.60
785 10 135 352.63 307 - 48.30 125 41 39.60
786 10 125 352.25 432 - 69.40 146 39 31.75
787 10 115 353.20 199 - 69.98 122 40 23.51
788 10 139 353.25 241 - 71.74 145 33 43.06
789 10 117 350.27 399 - 72.63 160 40 28.71
790 10 130 357.55 199 - 79.59 129 40 26.60
791 10 140 352.22 251 - 86.84 149 45 40.02
792 10 123 350.53 340 - 86.85 224 37 25.40
793 10 118 312.23 202 59 117.92 211 52 32.31
794 11 114 4.73 24 8 4.42 24 8 0.90
795 11 112 68.89 121 17 10.40 42 14 3.55
796 11 141 15.35 49 14 11.87 48 16 12.82
797 11 126 26.38 70 19 21.55 64 21 10.20
798 11 109 351.33 426 - 22.73 92 30 17.70
799 11 133 354.27 329 - 23.15 81 27 27.41
800 11 129 23.67 71 23 24.57 74 21 18.55
801 11 115 350.67 436 - 27.45 98 32 22.11
802 11 127 354.67 320 - 27.89 97 32 31.02
803 11 115 359.07 366 - 30.19 100 33 16.34
804 11 113 351.65 525 - 33.70 108 27 12.35
805 11 126 352.75 253 - 40.92 113 36 24.07
806 11 117 350.37 421 - 43.35 124 31 12.27
807 11 123 352.12 225 - 54.26 113 37 23.65
808 II 120 351 62 411 55 51 127 32 1867
809 11 134 351.13 263 - 70.79 128 42 40.33
810 11 128 350.22 302 - 72.90 149 45 34.31

A.2. EXPERIMENTAL DATA 213

Base-level NOLIMIT Analogical NOLIMIT

Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

811 11 124 357.95 152 - 82.45 142 43 40.65
812 12 105 6.82 33 11 5.55 30 10 2.00
813 12 111 19.30 60 20 15.90 60 20 5.00
814 12 124 351.53 274 - 29.61 94 29 17.73
815 12 115 55.15 95 31 31.18 81 27 7.51
816 12 141 350.92 322 - 32.69 94 31 23.11
817 12 130 351.10 188 - 38.60 93 27 19.85
818 12 149 351.95 216 - 38.86 103 34 31.79
819 12 118 353.20 669 - 41.34 122 34 22.34
820 12 134 91.27 133 37 43.81 100 33 23.89
821 12 141 351.23 355 - 46.78 94 31 25.42
822 12 136 353.15 201 - 47.25 101 30 21.91
823 12 126 351.77 211 - 48.30 98 32 29.93
824 12 139 351.72 164 - 50.44 122 40 24.25
825 12 112 350.68 295 - 55.99 128 42 25.01
826 12 134 351.97 361 - 58.54 118 39 42.83
827 12 139 352.07 209 - 60.84 138 46 36.35
828 12 121 354.55 162 - 105.22 144 37 13.17
829 12 128 352.65 169 - 146.48 216 47 35.65
830 13 113 16.58 55 14 11.13 42 14 2.47
831 13 119 350.82 407 - 22.65 75 25 14.15
832 13 113 350.17 387 - 22.82 64 21 9.91
833 13 109 350.67 470 - 35.62 111 36 15.65
834 13 122 353.52 269 - 39.49 98 31 16.86
835 13 112 350.52 389 - 44.59 113 28 7.39
836 13 114 351.18 333 - 45.65 131 39 20.06
837 13 133 350.58 219 - 53.31 121 39 35.96
838 13 140 354.47 231 - 67.64 147 35 39.14
839 13 137 352.48 263 - 68.49 147 48 51.69
840 13 127 356.25 206 - 68.79 142 47 31.58
841 13 138 363.70 146 - 77.93 142 47 51.55
842 13 120 352.33 485 - 79.76 189 35 20.71
843 13 120 351.43 362 - 86.70 172 49 42.01
844 13 125 351.50 293 - 118.44 158 49 39.54
845 13 135 350.82 200 - 126.86 197 52 48.56
846 13 114 350.43 330 - 229.19 309 46 23.65
847 14 109 353.57 339 - 55.94 117 39 16.45
848 14 122 352.02 209 - 57.85 112 35 17.69
849 14 119 350.37 541 - 63.75 152 43 40.70
850 14 113 351.70 331 - 68.85 140 46 25.05
851 14 134 351.27 202 - 73.82 130 41 32.66
852 14 125 350.48 148 - 77.08 131 43 33.24
853 14 128 357.45 140 - 78.42 155 48 47.71
854 14 134 351.32 247 - 82.78 146 32 34.31
855 14 136 351.97 177 - 83.12 168 46 37.17

214 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

IBa-level NOLIMIT Analogical NoLIMIT

Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

856 14 128 354.48 152 - 85.51 165 50 40.85

857 14 114 371.10 217 - 109.42 176 56 27.56

858 14 125 357.27 151 - 111.55 167 54 39.99

859 14 146 353.18 178 - 112.53 180 42 35.92

860 14 128 350.78 217 - 136.21 208 49 28.11

861 14 119 358.15 182 - 148.13 191 62 55.04

862 14 134 352.32 154 - 177.04 193 64 58.8b

863 14 121 354.20 229 - 241.68 329 53 49.44

864 14 123 351.33 162 - 281.94 276 46 25.34

865 15 109 20.73 60 15 10.78 45 15 2.04

866 .j 108 28.75 79 20 12.75 51 17 4.19

867 15 111 24.00 78 25 18.75 67 21 13.00

868 15 114 351.30 375 - 31.40 80 26 12.10
869 15 120 352.35 307 - 33.17 88 29 13.37

870 15 118 352.70 388 - 40.96 125 38 15.94

871 15 135 351.55 258 - 60.39 142 40 29 73

872 15 124 350.73 227 - 72.11 145 48 25.93

873 15 140 355.52 160 - 72.44 122 40 33.50

874 15 111 353.10 273 - 97.57 169 55 37.37

875 15 125 355.33 238 - 99.36 159 50 39.39

876 15 114 354.02 249 - 101.61 174 57 36.46

877 15 143 355.30 157 - 120.41 173 42 41.53

878 15 132 366.45 136 - 203.67 243 47 46.35
879 15 136 353.67 135 221.67 256 53 47.35

880 15 124 353.02 163 - 230.92 262 62 51.17

881 16 107 164.91 248 23 21.50 69 23 7.41

882 16 117 87.55 117 38 46.01 100 33 22.90

883 16 124 350.58 299 - 46.72 112 37 18.92

884 lb 127 350.58 235 - 49.50 115 32 23.11

885 16 116 135.14 146 44 57.85 111 37 17.48

886 16 124 352.65 278 - 61.38 128 40 47.12

887 16 127 353.47 179 - 65.22 134 44 29.65

888 16 122 351.22 134 - 75.55 141 44 23.90

889 16 141 351.77 146 - 76.43 124 41 39.19
890 16 124 352.50 414 - 86.54 159 48 50.84

891 16 116 353.15 321 - 113.06 200 46 27.19

892 16 120 358.65 170 - 114.14 160 50 39.87

893 16 129 353.48 212 - 142.21 212 64 65.34

894 16 130 351.78 281 - 144.07 186 56 47.14

895 16 128 352.38 246 - 169.75 235 47 25.76
896 16 120 35277 212 - 177.19 222 56 31.76
897 16 134 350.07 170 - 205.12 235 70 58.40

898 17 108 297 32 412 90 12.12 48 16 392

899 17 110 246 28 368 26 18.18 63 21 3 55

900 17 110 354.50 355 - 33.18 82 27 9.87

A.2. EXPERIMENTAL DATA 215

Base-level No LIMIT Analogical No LIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

901 17 111 33.68 89 29 34.75 99 30 6.84
902 17 114 123.34 148 28 37.31 105 29 6.55
903 17 123 350.40 173 - 53.37 113 30 10.12
904 17 112 352.68 163 - 60.00 122 40 15.20
905 17 129 353.85 181 - 61.14 133 44 35.48
906 17 133 352.12 248 - 80.70 155 51 45.03
907 17 137 353.83 135 - 116.81 175 47 39.39
908 17 141 350.98 146 - 120.66 197 65 58.45
909 17 146 363.72 135 - 129.87 161 51 58.90
910 17 112 354.10 323 - 150.80 212 51 24.74
911 17 134 361.28 151 - 193.03 182 59 65.35
912 17 143 359.45 103 - 304.52 238 58 59.89
913 17 128 376.25 121 - 360.81 236 74 56.89
914 18 107 12.88 51 15 7.38 36 12 !.09
915 18 112 351.62 293 - 26.48 75 25 12.38
916 18 114 351.07 226 - 34.05 84 26 7.54
917 18 113 350.80 274 - 37.87 102 32 7.83
918 18 138 350.57 275 - 71.54 '45 47 64.62
919 18 112 351.35 230 - 77.65 144 44 14.45
920 18 117 357.67 193 - 102.42 169 39 12.90
921 18 126 358.95 121 - 136.78 171 47 20.90
922 18 122 356.88 152 - 138.75 186 61 42.06
923 18 131 351.05 137 - 166.94 193 64 54.67
924 18 113 351.22 187 - 176.50 211 69 37.66
925 18 128 377.85 137 - 179.42 210 60 46.91
926 18 117 359.77 137 - 232.30 253 58 27.23
927 18 123 364.32 203 - 248.97 284 59 49.16
928 18 122 350.40 155 - 288.05 292 63 45.55
929 18 137 359.12 151 - 326.94 273 68 55.46
930 19 115 39.80 80 18 13.53 51 17 1.42
931 19 116 363.23 184 - 52.69 120 40 18.25
932 19 115 355.00 178 - 61.01 127 41 30.96
933 19 112 351.95 260 - 72.47 140 44 20.59
934 19 119 362.82 119 - 117.91 150 48 33.76
935 19 143 375.30 123 - 151.99 213 62 44.66
936 19 126 352.37 194 - 154.47 232 54 56.31
937 19 126 352.22 150 - 156.26 185 44 21.92
938 19 135 352.58 140 - 203.42 241 51 44.41
939 19 115 362.13 134 - 217.63 216 55 33.15
940 19 129 367.15 141 - 231.95 251 62 45.78
941 19 123 358.97 110 - 268.92 217 70 43.38
942 19 125 371.33 136 - 290.62 221 66 62.41
943 19 127 366.98 135 - 350.41 252 78 58.02[944 20 106 13.92 49 14 11.03 45 15 2.14
94. 20 107 183.16 275 21 16.65 63 21 5.43

216 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY

Num State Search Nodes Sol Replay Nodes Sol Retrieval
Time Length Time Length Time

946 20 115 351.80 224 - 27.83 74 22 4.53
947 20 110 351.52 214 - 37.37 108 34 7.69
948 20 114 350.63 242 - 41.31 111 29 9.99
949 20 129 351.27 175 - 66.28 190 53 46.14
950 20 111 85.92 138 44 66.43 152 48 19.97
951 20 114 352.03 228 - 69.59 138 45 23.21
952 20 127 352.25 141 - 99.80 159 52 32.75
953 20 120 365.55 142 - 101.29 149 48 34.55
954 20 127 365.93 201 - 205.95 212 66 48.05
955 20 122 365.67 126 - 225.74 229 63 33.17
956 20 123 362.63 117 - 228.14 235 (2 29.50
957 20 119 9.25 36 12 7.93 33 11 2.47
958 20 112 13.92 51 17 15.30 51 17 2.45
959 20 108 49.27 89 25 15.62 57 19 2.15
960 20 124 352.50 281 - 39.34 84 28 16.20
961 20 125 352.77 184 - 50.49 103 32 14.77
962 20 121 351.83 171 - 60.92 102 34 15.76
963 20 120 354.38 182 - 66.63 132 44 16.51
964 20 114 350.07 301 - 98.81 171 52 53.19
965 20 115 352.43 200 - 116.22 192 48 22.69
966 20 115 365.80 124 - 210.34 236 60 31.71
967 20 117 351.57 187 - 33.86 91 30 15.74
968 20 106 35.02 81 25 34.25 75 23 3.58
969 20 113 351.85 244 - 41.17 97 27 9.70
970 20 112 72.57 105 34 47.56 109 36 8.09
971 20 109 352.60 285 - 58.22 129 43 19.99
972 20 124 357.32 215 - 101.91 157 51 31.04
973 20 117 350.32 205 - 122.60 168 42 16.65
974 20 138 354.23 112 - 154.86 177 50 31.56
975 20 140 358.28 110 - 168.72 199 63 61.38
976 20 132 353.63 136 - 262.98 251 80 62.64
977 20 143 351.03 117 - 266.26 223 70 58.87
978 20 125 365.30 170 - 282.83 280 65 44.46
979 20 144 353.45 127 - 354.64 230 71 67.05
980 20 123 351.33 311 - 25.78 63 21 7.46
981 20 113 356.08 187 - 35.75 91 30 10.44
982 20 116 362.17 246 - 56.40 137 45 24.29
983 20 112 352.47 167 - 63.10 133 44 22.30
984 20 124 350.62 185 - 91.14 129 36 14.29
985 20 135 356.80 117 - 91.44 154 51 37.31
986 20 124 351.27 241 - 9241 150 50 53.57
987 20 114 350.17 191 - 109.67 173 49 22.22
988 20 122 32403 242 59 113.18 189 60 33.91
989 20 135 354.62 141 - 276.47 268 66 64.63
990 20 129 352.03 14i - 285.40 251 67 78.32

A.2. EXPERIMENTAL DATA 217

Base-level NoLIMIT Analogical NoLIMIT
Prob Goals Initial (without analogy) PRODIGY/ANALOGY
Num State Search Nodes Sol Replay Nodes Sal Retrieval

Time Length Time Length Time
991 20 106 350.20 321 - 30.35 91 29 8.50
992 20 127 352.75 149 - 47.39 99 31 13.24
993 20 138 353.08 135 - 79.71 133 44 37.28
994 20 129 350.22 166 - 88.10 137 43 23.81
995 20 119 373.62 146 - 129.26 189 60 31.86
996 20 122 355.25 156 - 131.38 189 58 44.27
997 20 142 364.93 118 - 235.60 222 69 79.79
998 20 131 351.43 123 - 262.82 219 70 57.87
999 20 136 407.05 161 - 310.15 290 65 53.75
1000 20 136 358.10 124 - 343.19 255 80 63.59

218 APPENDIX A. THE LOGISTICS TRANSPORTATION DOMAIN

Bibliography

[Aho et al., 1974] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[Allen and Langley, 1990] John Allen and Pat Langley. Integrating memory and
search in planning. In Proceedings of the DARPA Workshop on Innovative Ap-
proaches to Planning, Scheduling, and Control. Morgan Kaufmann, November 1990.

[Anderson, 1983] John R. Anderson. The Architecture of Cognition. Harvard Uni-
versity Press, Cambridge, Mass, 1983.

[Ashley and Rissland, 1987] Kevin D. Ashley and Edwina L. Rissland. Compare and
contrast: A test of expertise. In Proceedings of AAAI-87, pages 273-278, 1987.

[Bain, 1986] W. Bain. Case-based reasoning: A computer model of subjective assess-
ment. PhD thesis, Yale University, 1986.

[Barletta and Mark, 19881 Ralph Barletta and William Mark. Explanation-based in-
dexing of cases. In Proceedings of the First Workshop on Case-Based Reasoning,
pages 50-60, Tampa, FL, May 1988. Morgan Kaufmann.

[Barrett et al., 1991] A. Barrett, S. Soderland, and Dan Weld. The effect of step-crder
representations on planning. Technical Report 91-05-06, Department of Computer
Science and Engineering, University of Washington, 1991.

[Bhansali, 1991] Sanjay Bhansali. Domain-based program synthesis using planning
and derivational analogy. PhD thesis, Department of Computer Science, University
of Illinois at Urbana-Champaign, 1991.

[Bhatnagar, 1992] Neeraj Bhatnagar. On-line learning from search failures. PhD
thesis, Rutgers University, 1992.

219

220 BIBLIOGRAPHY

[Blumenthal, 1990] Brad Blumenthal. Replaying episodes of a metaphoric application
interface designer. PhD thesis, University of Texas, Artificial Intelligence Lab,
Austin, December 1990.

[Blythe and Veloso, 1992] Jim Blythe and Manuela M. Veloso. An analysis of search
techniques for a totally-ordered nonlinear planner. In Proceedings of the First
International Conference on AI Planning Systems, College Park, MD, June 1992.

[Branting, 1991] L. Karl Branting. Integrating rules and precedents for classification
and ezplanation:Automating legal analysis. PhD thesis, University of Texas at
Austin, 1991.

[Cain et al., 1991] T. Cain, M. Pazzani, and G. Silverstein. Using domain knowledge
to influence similarity judgments. In Proceedings of the 1991 DARPA Workshop
on Case-Based Reasoning. Morgan Kaufmann, May 1991.

[Carbonell and Gil, 1990] Jaime G. Carbonell and Yolanda Gil. Learning by experi-
mentation: The operator refinement method. In R. S. Michalski and Y. Kodratoff,
editors, Machine Learning: An Artificial Intelligence Approach, Volume III. Mor-
gan Kaufmann, Palo Alto, CA, 1990.

[Carbonell and Veloso, 1988] Jaime G. Carbonell and Manuela M. Veloso. Integrating
derivational analogy into a general problem solving architecture. In Proceedings of
the First Workshop on Case-Based Reasoning, pages 104-124, Tampa, FL, May
1988. Morgan Kaufmann.

[Carbonell et al., 1990] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton.
Prodigy: An integrated architecture for planning and learning. In K. VanLehn,
editor, Architectures for Intelligence. Erlbaum, Hillsdale, NJ, 1990. Also Technical
Report CMU-CS-89-189.

[Carbonell et al., 1992] Jaime G. Carbonell, and the PRODIGY Research Group.
PRODIGY4.0: The manual and tutorial. Technical Report CMU-CS-92-150,
School of Computer Science, Carnegie Mellon University, June 1992.

[Carbonell, 19831 Jaime G. Carbonell. Learning by analogy: Formulating and gener-
alizing plans from past experience. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors, Machine Learning, An Artificial Intelligence Approach, Palo Alto,
CA, 1983. Tioga Press.

[Carbonell, 19861 Jaime G. Carbonell. Derivational analogy: A theory of reconstruc-
tive problem solving and expertise acquisition, In R. S. Michalski, J. G. Carbonell,

BIBLIOGRAPHY 221

and T. M. Mitchell, editors, Machine Learning, An Artificial Intelligence Approach,
Volume II. Morgan Kaufman, 1986.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial Intelli-
gence, 32:333-378, 1987.

[Cheng and Carbonell, 1986] Pat W. Cheng and Jaime G. Carbonell. Inducing iter-
ative rules from experience: The fermi experiment. In Proceedings of AAAI-86,
1986.

[DeJong and Mooney, 1986] Gerald F. DeJong and Raymond Mooney. Explanation-
based learning: An alternative view. Machine Learning, 1(2):145-176, 1986.

[Duval, 1991] B6atrice Duval. Abduction for explanation based learning. In Proceed-
ings of the European Working Session on Learning. Springer-Verlag, March 1991.

[Ernst and Newell, 1969] George W. Ernst and Allen Newell. GPS: A Case Study in
Generality and Problem Solving. ACM Monograph Series. Academic Press, New
York, NY, 1969.

!Etzioni, 1990] Oren Etzioni. A Structural Theory of Explanation-Based Learning.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1990. Avail-
able as technical report CMU-CS-90-185.

[Fikes and Nilsson, 19711 Richard E. Fikes and Nils J. Nilsson. Strips: A new ap-
proach to the application of theorem proving to problem solving. Artificial Intelli-
gence, 2:189-208, 1971.

[Gentner, 1987] Dedre Gentner. The mechanisms of analogical learning. In S. Vos-
niadou and A. Ortony, editors, Similarity and Analogical Reasoning. Cambridge
University Press, New York, NY, 1987.

[Goel, 1990] Ashok Goel. A model-based approach to case adaptation. In Proceedings
of the Thirteenth Annual Conference of the Cognitive Science Society, pages 143-
148, Hillsdale, NJ, 1990. Lawrence Erlbaum Associates, Inc.

[Golding, 1991] Andrew R. Golding. Pronouncing names by a combination of rule-
based and Case-based reasoning. PhD thesis, Stanford University, 1991.

[Hammond, 1986] Kristian J. Hammond. Case-based Planning: An Integrated Theory
of Planning, Learning and Memory. PhD thesis, Yale University, 1986.

222 BIBLIOGRAPHY

[Hammond, 1989] Kristian J. Hammond. Opportunistic memory. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, pages 504-
510, San Mateo, CA, 1989. Morgan Kaufmann.

[Harandi and Bhansali, 19891 M. T. Harandi and S. Bhansali. Program derivation
using analogy. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 389-394, 1989.

[Hickman and Larkin, 1990] Angela K. Hickman and Jill H. Larkin. Internal analogy:
A model of transfer within problems. In The 12th Annual Conference of The
Cognitive Science Society. Lawrence Erlbaum Associates, 1990.

[Hickman et al., 1990] Angela K. Hickman, Peter Shell, and Jaime G. Carbonell. In-
ternal analogy: Reducing search during problem solving. In C. Copetas, editor,
The Computer Science Research Review 1990. The School of Computer Science,
Carnegie Mellon University, 1990.

[Hinrichs and Kolodner, 1991] Thomas R. Hinrichs and Janet L. Kolodner. The roles
of adaptation on case-based design. In Proceedings of the Ninth National Conference
on Artificial Intelligence, pages 28-33. AAAI Press/The MIT Press, 1991.

[Joseph, 19891 Robert L. Joseph. Graphical knowledge acquisition. In Proceedings
of the 4 th Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff,
Canada, 1989.

[Kambhampati, 1989] Subbarao Karnbhampati. Flexible Reuse and Modification in
Hierarchical Planning: A Validation Structure Based Approach. PhD thesis, Com-
puter Vision Laboratory, Center for Automation Research, University of Maryland,
1989.

[Kedar-Cabelli, 1985] S. Kedar-Cabelli. Purpose-directed analogy. In Proceedings of
the Seventh Annual Conference of the Cognitive Science Society, pages 150-159,
1985.

[Knoblock, 1991] Craig A. Knoblock. Automatically Generating Abstractions for
Problem Solving. PhD thesis, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1991. Available as technical report CMU-CS-91-120.

[Kolmogorov, 19651 A. N. Kolmogorov. Three approaches to the concept of the
amount of information. In Probl. Inf. Transm., volume 1/1. 1965.

BIBLIOGRAPHY 223

[Kolodner, 1980] Janet L. Kolodner. Retrieval and Organizational Strategies in Con-
ceptual Memory: A Computer Model. PhD thesis, Yale University, 1980.

[Kolodner, 19841 Janet L. Kolodner. Retrieval and Organization Strategies in Con-
ceptual Memory. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 1984.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak method for learning. Artifi-
cial Intelligence, 26:35-77, 1985.

[Koton, 19881 Phyllis Koton. Reasoning about evidence in causal explanation. In
Proceedings of AAAI-88, pages 256-261, 1988.

[Laird et al., 1986] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking
in SOAR: The anatomy of a general learning mechanism. Machine Learning, 1:11-
46, 1986.

[Lebowitz, 1980] Michael Lebowitz. Generalization and Memory in an Integrated
Understanding System. PhD thesis, Yale University, 1980.

[Minton et al., 1989] Steven Minton, Craig A. Knoblock, Dan R. Kuokka, Yolanda
Gil, Robert L. Joseph, and Jaime G. Carbonell. PRODIGY 2.0: The manual and
tutorial. Technical Report CMU-CS-89-146, School of Computer Science, Carnegie
Mellon University, 1989.

[Minton et al., 1991] Steven Minton, John Bresina, and Mark Drummond. Commit-
ment strategies in planning: A comparative analysis. In Proceedings of IJCAI-91,
pages 259-265, 1991.

[Minton, 1985] Steven Minton. Selectively generalizing plans for problem solving. In
Proceedings of AAAI-85, pages 596-599, 1985.

[Minton, 19881 Steven Minton. Learning Effective Search Control Knowledge: An
Explanation-Based Approach. PhD thesis, Computer Science Department, Carnegie
Mellon University, 1988.

[Mitchell et al., 1983] Tom M. Mitchell, Paul E. Utgoff, and R. B. Banerji. Learning
by experimentation: Acquiring and refining problem-solving heuristics. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning, An
Artificial Intelligence Approach. Tioga Press, Palo Alto, CA, 1983.

[Mitchell et al., 1986] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-
Cabelli. Explanation-based generalization: A unifying view. Machine Learning,
1:47-80, 1986.

224 BIBLIOGRAPHY

[Mooney, 1988] Raymond J. Mooney. Generalizing the order of operators in macro-
operators. In Proceedings of the Fifth International Conference on Machine Learn-
ing, pages 270-283, San Mateo, CA, 1988. Morgan Kaufmann.

[Mostow, 19891 Jack Mostow. Automated replay of design plans: Some issues in
derivational analogy. Artificial Intelligence, 40(1-3), 1989.

[Neves, 1980] David M. Neves. Learning algebraic procedures from examples. PhD
thesis, Department of Psychology, Carnegie Mellon University, 1980.

[Newell and Simon, 1956] Allen Newell and Herbert A. Simon. The logic theory ma-
chine. IRE Transactions on Information Theory IT-2, 3:61-79, 1956.

[Newell and Simon, 19721 Allen Newell and Herbert A. Simon. Human Problem Solv-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Newell et al., 1963] Allen Newell, J. C. Shaw, and Herbert A. Simon. Empirical ex-
plorations with the logic theory machine: A case study in heuristics. In E. Feigen-
baum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New York,
NY, 1963.

[Newell, 19801 Allen Newell. Physical symbol systems. Cognitive Science, 4-2:135-
184, 1980.

[Pazzani, 1990] M. Pazzani. Creating a Memory of Causal Relationships: An inte-
gration of empirical and explanation-based learning methods. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1990.

[P6rez and Etzioni, 1992] M. Alicia Perez and Oren Etzioni. DYNAMIC: A new role
for training problems in EBL. In D. Sleeman and P. Edwards, editors, Proceedings
of the Ninth International Conference on Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1992.

[P6rez, 1992] M. Alicia P~rez. Learning from experts knowledge to improve the qual-
ity of plans. Thesis proposal, School of Computer Science, Carnegie Mellon Uni-
versity, 1992.

[Polya, 1945] George Polya. How to Solve It. Princeton University Press, Princeton,
NJ, 1945.

[Redmond, 1990] Michael Redmond. Distributed cases for case-based reasoning; Fa-
cilitating the use I rultiple cases in Proceedings of the Eighth National Conference

BIBLIOGRAPHY 225

on Artificial Intelligence, pages 304-309, Cambridge, MA, 1990. AAAI Press/The
MIT Press.

[Rich and Knight, 1991] Elaine Rich and Kevin Knight. Artificial Intelligence.
McGraw-Hill, Inc., 1991. Second edition.

[Rliesbeck and Schank, 1989] Christopher K. Riesbeck and Roger C. Schank. Inside
Case-Based Reasoning. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey,
1989.

[Rissland and Skalak, 1991] Edwina L. Rissland and David B. Skalak. CABARET:
Rule interpretation in a hybrid architecture. International Journal of Man-Machine
Studies, 34(6), 1991.

[Rosenbloom et al., 1990] Paul S. Rosenbloom, S. Lee, and Amy Unruh. Responding
to impasses in memory-driven behavior: A framework for planning. In Proceedings
of the DARPA Workshop on Innovative Approaches to Planning, Scheduling, and
Control. Morgan Kaufmann, November 1990.

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of
IJCAI-75, pages 206-213, 1975.

[Schank, 19821 Roger C. Schank. Dynamic Memory. Cambridge University Press,
1982.

[Simpson, 19851 Robert L. Simpson. A computer model of case-based reasoning in
problem solving: An investigation in the domain of dispute mediation. PhD thesis,
School of Information and Computer Science, Georgia Institute of Technology,
1985.

[Sussman, 1975] Gerald J. Sussman. A Computer Model of Skill Acquisition. Ameri-
can Elsevier, New York, 1975. Also available as technical report AI-TR-297, Arti-
ficial Intelligence Laboratory, MIT, 1975.

[Sycara, 1987] E. P. Sycara. Resolving adversarial conflicts: An approach to inte-
grating case-based and analytic methods. PhD thesis, School of Information and
Computer Science, Georgia Institute of Technology, 1987.

[Tadepalli, 1989] Prasad Tadepalli. Lazy explanation-based learning: A solution to
the intractable theory problem. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 694-700, San Mateo, CA, 1989. Morgan
Kaufmann.

226 BIBLIOGRAPHY

[Tambe and Rosenbloom, 1989] Milind Tambe and Paul Rosenbloom. Eliminating
expensive chunks by restricting expressiveness. In Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelligence, pages 731-737, San Mateo,
CA, 1989. Morgan Kaufmann.

[Tate, 1977] Austin Tate. Generating project networks. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages 888-900, 1977.

[Veloso and Carbonell, 1989] Manuela M. Veloso and Jaime G. Carbonell. Learning
analogies by analogy - The closed loop of memory organization and problem solving.
In Proceedings of the Second Workshop on Case-Based Reasoning, pages 153-158,
Pensacola, FL, May 1989. Morgan Kaufmann.

[Veloso and Carbonell, 1992a] Manuela M. Veloso and Jaime G. Carbonell. Deriva-
tional analogy in PRODIGY: Automating case acquisition, storage, and utilization.
In Machine Learning, 1992. (in press).

[Veloso and Carbonell, 1992b] Manuela M. Veloso and Jaime G. Carbonell. Towards
scaling up machine learning: A case study with derivational analogy in PRODIGY. In
S. Minton, editor, Machine Learning Methods for Planning and Scheduling. Morgan
Kaufmann, 1992. (in press).

[Veloso and Carbonell, 1993 forthcoming] Manuela M. Veloso and Jaime G. Car-
bonell. Automatic case generation, storage, and retrieval in PRODIGY. In R. S.
Michalski, editor, Machine Learning: A Multistrategy Approach, Volume IV. Mor-
gan Kaufman, 1993, forthcoming.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving using intelligent casual-
commitment. Technical Report CMU-CS-89-210, School of Computer Science,
Carnegie Mellon University, 1989.

[Waldinger, 1981] R. Waldinger. Achieving several goals simultaneously. In N. J.
Nilsson and B. Webber, editors, Readings in Artificial Intelligence, pages 250-271.
Tioga, Palo Alto, CA, 1981.

[Wang, 1992] Xuemei Wang. Matching in PRODIGY. Technical report, School of
Computer Science, Carnegie Mellon University, 1992. forthcoming.

[Waterman, 1970] D. Waterman. Generalization learning techniques for automating
the learning of heuristics Artificial Intelligence, 1:121 -170, 1970.

BIBLIOGRAPHY 227

[Wilkins, 19891 David E. Wilkins. Can Al planners solve practical problems? Tech-

nical Note 468R, SRI International, 1989.

